01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra I
  4. Exercise : Convert between exponentials with powers and a product of exponents

Convert between exponentials with powers and a product of exponents Algebra I

Simplify the following expressions.

2^{3x}

For any two integers m and n :

\left( x^{m} \right)^{n}=x^{m\cdot n}

In our problem, applying the formula from right to left:

2^{3\cdot x}=\left( 2^{3} \right)^{x}

Using the definition of a power:

2^{3}=2\cdot2\cdot2=8

We conclude that:

2^{3x}=8^x

3^{4x}

For any two integers m and n :

\left( x^{m} \right)^{n}=x^{m\cdot n}

In our problem, applying the formula from right to left:

3^{4\cdot x}=\left( 3^{4} \right)^{x}

Using the definition of a power:

3^{4}=3\cdot3\cdot3\cdot3=81

We conclude that:

3^{4x}=81^x

2^{-3x}

For any two integers m and n :

\left( x^{m} \right)^{n}=x^{m\cdot n}

In our problem, applying the formula from right to left:

2^{-3\cdot x}=\left( 2^{-3} \right)^{x}

Using the definition of a power:

2^{-3}=\dfrac{1}{2\cdot2\cdot2}=\dfrac{1}{8}

We conclude that:

2^{-3x}=\left( \dfrac{1}{8} \right)^x

\left( \dfrac{1}{5} \right)^{-2x}

For any two integers m and n :

\left( x^{m} \right)^{n}=x^{m\cdot n}

In our problem, applying the formula from right to left:

\left( \dfrac{1}{5} \right)^{-2\cdot x}=\left( \left( \dfrac{1}{5} \right)^{-2} \right)^{x}

Using the definition of a power:

\left( \dfrac{1}{5} \right)^{-2}=5\cdot5=25

We conclude that:

\left( \dfrac{1}{5} \right)^{-2x}=25^x

10^{2x}

For any two integers m and n :

\left( x^{m} \right)^{n}=x^{m\cdot n}

In our problem, applying the formula from right to left:

10^{2\cdot x}=\left( 10^{2} \right)^{x}

Using the definition of a power:

10^{2}=10\cdot10=100

We conclude that:

10^{2x}=100^{x}

4^{-3x}

For any two integers m and n :

\left( x^{m} \right)^{n}=x^{m\cdot n}

In our problem, applying the formula from right to left:

4^{-3\cdot x}=\left( 4^{-3} \right)^{x}

Using the definition of a power:

4^{-3}=\dfrac{1}{4\cdot4\cdot4}=\dfrac{1}{64}

We conclude that:

4^{-3x}=\left( \dfrac{1}{64}\right)^{x}

\left( \dfrac{2}{3} \right)^{-x}

For any two integers m and n :

\left( x^{m} \right)^{n}=x^{m\cdot n}

In our problem, applying the formula from right to left:

\left( \dfrac{2}{3} \right)^{-x}=\left( \left( \dfrac{2}{3} \right)^{-1} \right)^{x}

Using the definition of a power:

\left( \dfrac{2}{3} \right)^{-1}=\dfrac{3}{2}

We conclude that:

\left( \dfrac{2}{3} \right)^{-x}=\left( \dfrac{3}{2} \right)^{x}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Exponential functions
  • Exercise : Match exponential functions and their graphs
  • Exercise : Convert between a product of exponentials and a sum
  • Exercise : Convert a quotient of exponentials into a difference
  • Exercise : Find a formula of exponential growth or decay from two points
  • support@kartable.com
  • Legal notice

© Kartable 2026