01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra I
  4. Exercise : Determine if two ratios are equivalent

Determine if two ratios are equivalent Algebra I

In each case, determine whether the given ratios are equivalent.

\dfrac{4}{9} and \dfrac{9}{38}

Let's determine if we can simplify the ratios:

\dfrac{4}{9}=\dfrac{2\times2}{3\times3}

\dfrac{4}{9} cannot be simplified, it is in simplest form.

\dfrac{9}{38}=\dfrac{3\times3}{2\times19}

\dfrac{9}{38} cannot be simplified, it is in simplest form.

\dfrac{4}{9} and \dfrac{9}{38} are not equivalent.

\dfrac {2} {3} and \dfrac{9}{12}

Let's determine if we can simplify the ratios:

\dfrac {2} {3} cannot be simplified, it is in simplest form.

\dfrac {9} {12} = \dfrac {3 \times3} {3 \times 4}=\dfrac{3}{4}

\dfrac {9} {12} can be simplified to \dfrac{3}{4}.

\dfrac{2}{3} \neq \dfrac{3}{4}

\dfrac{2}{3} and \dfrac {9} {12} are not equivalent.

\dfrac{3}{9} and \dfrac{2}{6}

Let's determine if we can simplify the ratios:

\dfrac {3} {9} =\dfrac{3\times 1}{3 \times 3}=\dfrac{1}{3}

\dfrac {2} {6} = \dfrac {2 \times1} {2 \times 3} = \dfrac {1} {3}

\dfrac{3}{9} and \dfrac{2}{6} are equivalent.

\dfrac {12} {27} and \dfrac {8} {18}

Let's determine if we can simplify the ratios:

\dfrac {12} {27} = \dfrac {3 \times 4} {3 \times 9} = \dfrac {4} {9}

\dfrac {8} {18} = \dfrac {2 \times 4} {2 \times 9} = \dfrac {4} {9}

\dfrac {12} {27} and \dfrac {8} {18} are equivalent.

\dfrac {5} {12} and \dfrac {7} {13}

Let's determine if we can simplify the ratios:

\dfrac{5}{12} is simplified.

\dfrac{7}{13} is simplified.

\dfrac{5}{12} \neq \dfrac {7} {13}

\dfrac {5} {12} and \dfrac {7} {13} are not equivalent.

\dfrac {25} {45} and \dfrac {5} {9}

Let's determine if we can simplify the ratios:

\dfrac {25} {45} = \dfrac {5 \times 5} {5 \times 9} = \dfrac {5} {9}

\dfrac {25} {45} and \dfrac {5} {9} are equivalent.

\dfrac {15} {105} and \dfrac {3} {21}

Let's determine if we can simplify the ratios:

\dfrac {15} {105} = \dfrac {15 \times 1} {15 \times 7} = \dfrac {1} {7}

\dfrac {3} {21} = \dfrac {3 \times 1} {3 \times 7} = \dfrac {1} {7}

\dfrac {15} {105} and \dfrac {3} {21} are equivalent.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Manipulating quantities
  • Exercise : Find a unit rate
  • Exercise : Find a unit price
  • Exercise : Find a percent of change
  • Exercise : Find a value after a certain percent of change
  • support@kartable.com
  • Legal notice

© Kartable 2026