01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra I
  4. Exercise : Determine the domain and range of logarithms from equations of functions

Determine the domain and range of logarithms from equations of functions Algebra I

Find the domain and the range of the following functions.

f : x \longmapsto \log_2\left(x+3\right)

The logarithm function is defined for all positive real numbers. Therefore the domain of f equals:

\{x \in \mathbb{R} : x+3 \gt 0\}\\=\{x\in \mathbb{R}: x \gt -3\}\\=\left(-3, \infty\right)

We have:
x\in(-3,\infty)\Leftrightarrow x+3 \in (0,\infty)
and
\log_2((0,\infty))=\mathbb{R}
Thus f((-3,\infty))=\mathbb{R}.
The range of f equals (-\infty,\infty).

f :\left(-3,\infty\right) \longrightarrow \left(-\infty,\infty\right)

f : x \longmapsto \log_3\left(3x+5\right)

The logarithm function is defined for all positive real numbers. Therefore the domain of f equals:

\{x \in \mathbb{R} : 3x+5 \gt 0\}\\=\{x\in \mathbb{R}: 3x \gt -5\}\\ =\{x\in \mathbb{R}: 3x \gt -\dfrac{5}{3} \}\\=\left(-\dfrac{5}{3}, \infty\right)

We have:
x\in\left(\dfrac{-5}{3},\infty\right)\Leftrightarrow 3x+5 \in (0,\infty)
and
\log_3((0,\infty))=\mathbb{R}
Thus f\left(\left(\dfrac{-5}{3},\infty\right)\right)=\mathbb{R}.
The range of f equals (-\infty,\infty).

f :\left( -\dfrac{5}{3},\infty\right) \longrightarrow \left(-\infty,\infty\right)

f : x \longmapsto \log_5\left(x^2+1\right)

The logarithm function is defined for all positive real numbers. Therefore the domain of f equals:

\{x \in \mathbb{R} : x^2+1 \gt 0\}

Since x^2+1 is always positive, we conclude that the domain of f is \mathbb{R} =\left(-\infty, \infty\right).

We have:
x\in\mathbb{R}\Leftrightarrow x^2+1 \in [1,\infty)
and
\log_5([1,\infty))=[0,\infty)
Thus f\left(\mathbb{R}\right)=[0,\infty).
The range of f equals [0,\infty).

f :\left(-\infty,\infty\right) \longrightarrow \left[0,\infty\right)

f : x \longmapsto \log_2\left(1-x^2\right)

The logarithm function is defined for all positive real numbers. Therefore, the domain of f equals:

\{x \in \mathbb{R} : 1-x^2 \gt 0\}\\=\{x\in \mathbb{R}: x^2 \lt 1\}\\=\left(-1, 1\right)

We have:
x\in(-1{,}1)\Leftrightarrow 1-x^2 \in (0{,}1]
and
\log_2((0{,}1])=(-\infty,0]
Thus f\left((0{,}1]\right)=(-\infty,0].
The range of f equals (-\infty,0].

f :\left(-1{,}1\right)\longrightarrow\left(-\infty,0\right)

f : x \longmapsto \log_2\left(x^2-4\right)

The logarithm function is defined for all positive real numbers. Therefore, the domain of f equals:

\{x \in \mathbb{R} : x^2-4\gt 0\}\\\{x \in \mathbb{R} : x^2 \gt 4\}\\

So either:

\begin{cases} x \lt -2 \cr \text{or}\cr x \gt 2\end{cases}

Thus, the domain of f equals:

\left(-\infty,-2\right)\cup\left(2,\infty\right)

We have:
x\in(-\infty,-2)\cup(2,\infty)\Leftrightarrow x^2-4 \in (0,\infty)
and
\log_2((0,\infty))=\mathbb{R}
Thus f((-\infty,-2)\cup(2,\infty))=\mathbb{R}.
The range of f equals (-\infty,\infty).

f :\left(-\infty,-2\right)\cup\left(2,\infty\right)\longrightarrow \left(-\infty,\infty\right)

f : x \longmapsto \log_9\left(9-x^2\right)

The logarithm function is defined for all positive real numbers. Therefore, the domain of f equals:

\{x \in \mathbb{R} :9-x^2 \gt 0\}\\=\{x\in \mathbb{R}: x^2 \lt 9\}\\=\left(-3, 3\right)

We have:
x\in(-3{,}3)\Leftrightarrow 9-x^2 \in (0{,}9]
and
\log_9((0{,}9])=(-\infty,1]
Thus f((-3{,}3))=(-\infty,1].
The range of f equals (-\infty,1].

f :\left(-3{,}3\right) \longrightarrow \left(-\infty,1\right]

f : x \longmapsto \log_2\left(x^4\right)

The logarithm function is defined for all positive real numbers. Therefore, the domain of f equals:

\{x \in \mathbb{R} : x^4\gt 0\}

Since x^4 is always non-negative, only x=0 lies outside the domain. The domain is:

\mathbb{R}- \{0\} = \left(-\infty,0\right)\cup \left(0,\infty\right)

We have:
x\in(-\infty,0)\cup(0,\infty)\Leftrightarrow x^4 \in (0,\infty)
and
\log_2((0,\infty))=\mathbb{R}
Thus f((-\infty,0)\cup(0,\infty))=\mathbb{R}.
The range of f equals (-\infty,\infty).

f :\left(-\infty,0\right)\cup \left(0,\infty\right) \longrightarrow \left(-\infty,\infty\right)

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Logarithmic functions
  • Exercise : Match logarithmic functions and graphs
  • Exercise : Convert between a sum of logarithms and a product
  • Exercise : Convert between a difference of logarithms and a quotient
  • Exercise : Convert between a multi-term sum of logarithms and a power
  • Exercise : Change the base of a logarithm
  • support@kartable.com
  • Legal notice

© Kartable 2026