01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra I
  4. Exercise : Solve a greatest integer function equation with operations

Solve a greatest integer function equation with operations Algebra I

Solve the following equations using operations.

\lfloor x-\dfrac{2}{7} \rfloor =3

The equation:

\lfloor x-\dfrac{2}{7} \rfloor =3

is equivalent to:

3\leq x-\dfrac{2}{7} \lt 4

Adding \dfrac{2}{7} to all sides gives:

3+ \dfrac {2} {7} \leq x- \dfrac {2} {7}+\dfrac {2} {7} \lt 4+ \dfrac {2} {7}

\dfrac{23}{7} \leq x \lt \dfrac{30}{7}

x is a solution of the equation if and only if:

\dfrac{23}{7} \leq x \lt \dfrac{30}{7}

\lfloor x-\dfrac{2}{3} \rfloor =7

The equation:

\lfloor x-\dfrac{2}{3} \rfloor =7

is equivalent to:

6\leq x-\dfrac{2}{3} \lt 7

Adding \dfrac{2}{3} to all sides gives:

6+\dfrac{2}{3} \leq x-\dfrac{2}{3} +\dfrac{2}{3} \lt 7+\dfrac{2}{3}

\dfrac{20}{3} \leq x \lt \dfrac{23}{3}

x is a solution of the equation if and only if:

\dfrac{18}{3} \leq x \lt \dfrac{23}{3}

\lfloor x-\dfrac{1}{5} \rfloor =12

The equation:

\lfloor x-\dfrac{1}{5} \rfloor =12

is equivalent to:

11\leq x-\dfrac{1}{5} \lt 12

Adding \dfrac{1}{5} to all sides gives:

11+ \dfrac{1}{5} \leq x-\dfrac{1}{5}+ \dfrac{1}{5} \lt 12+ \dfrac{1}{5}

\dfrac{56}{5} \leq x \lt \dfrac{61}{5}

x is a solution of the equation if and only if:

\dfrac{56}{5} \leq x \lt \dfrac{61}{5}

\lfloor 3x-\dfrac{2}{9} \rfloor =2

The equation:

\lfloor 3x-\dfrac{2}{9} \rfloor =2

is equivalent to:

1\leq 3x-\dfrac{2}{9} \lt 2

Adding \dfrac{2}{9} to all sides gives:

1 +\dfrac{2}{9} \leq 3x-\dfrac{2}{9}+\dfrac{2}{9} \lt 2+\dfrac{2}{9}

\dfrac{11}{9} \leq 3x \lt \dfrac{20}{9}

Multiply all sides by \dfrac{1}{3} :

\dfrac{1}{3}\cdot \dfrac{11}{9} \leq \dfrac{1}{3}\cdot 3x \lt \dfrac{1}{3}\cdot \dfrac{20}{9}

\dfrac{11}{27} \leq x \lt \dfrac{20}{27}

x is a solution of the equation if and only if:

\dfrac{11}{27} \leq x \lt \dfrac{20}{27}

\lfloor 5x-\dfrac{2}{7} \rfloor =4

The equation:

\lfloor 5x-\dfrac{2}{7} \rfloor =4

is equivalent to:

3\leq 5x-\dfrac{2}{7} \lt 4

Adding \dfrac{2}{7} to all sides gives:

3+ \dfrac{2}{7} \leq 5x-\dfrac{2}{7}+ \dfrac{2}{7} \lt 4 + \dfrac{2}{7}

\dfrac{23}{7} \leq 5x \lt \dfrac{30}{7}

Multiply all sides by \dfrac{1}{5} :

\dfrac{1}{5}\cdot \dfrac{23}{7} \leq \dfrac{1}{5}\cdot 5x \lt \dfrac{1}{5}\cdot \dfrac{30}{7}

\dfrac{23}{35} \leq x \lt \dfrac{30}{35}

x is a solution of the equation if and only if:

\dfrac{23}{35} \leq x \lt \dfrac{30}{35}

\lfloor 7x+\dfrac{1}{2} \rfloor =-1

The equation:

\lfloor 7x+\dfrac{1}{2} \rfloor =-1

is equivalent to:

-2\leq 7x+\dfrac{1}{2} \lt -1

Subtracting \dfrac{1}{2} from all sides gives:

-2 -\dfrac{1}{2} \leq 7x+\dfrac{1}{2}-\dfrac{1}{2} \lt -1-\dfrac{1}{2}

\dfrac{-5}{2} \leq 7x \lt \dfrac{-3}{2}

Multiply all sides by \dfrac{1}{7} :

\dfrac{1}{7}\cdot \dfrac{-5}{2} \leq \dfrac{1}{7}\cdot 7x \lt \dfrac{1}{7}\cdot \dfrac{-3}{2}

\dfrac{-5}{14} \leq x \lt \dfrac{-3}{14}

x is a solution of the equation if and only if:

\dfrac{-5}{14} \leq x \lt \dfrac{-3}{14}

\lfloor x+\dfrac{2}{7} \rfloor =-5

The equation:

\lfloor x+\dfrac{2}{7} \rfloor =-5

is equivalent to:

-6\leq x+\dfrac{2}{7} \lt -5

Subtracting \dfrac{2}{7} from all sides gives:

-6 -\dfrac{2}{7} \leq x+\dfrac{2}{7} -\dfrac{2}{7}\lt -5-\dfrac{2}{7}

\dfrac{-44}{7} \leq x \lt \dfrac{-37}{7}

x is a solution of the equation if and only if:

\dfrac{-44}{7} \leq x \lt \dfrac{-37}{7}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Equations and inequalities with absolute value and greatest integer functions
  • Exercise : Solve an absolute value equation with graphs
  • Exercise : Solve an absolute value equation with operations
  • Exercise : Solve an absolute value inequality with graphs
  • Exercise : Solve an absolute value inequality with operations
  • Exercise : Solve a greatest integer function inequality with operations
  • support@kartable.com
  • Legal notice

© Kartable 2026