01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra I
  4. Exercise : Solve quadratic equations with calculations

Solve quadratic equations with calculations Algebra I

Solve the following equations.

2x^2-3x+1=3

The solutions of the equation ax^{2}+bx+c=0 are:

  • x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
  • x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}

If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.

If b^{2}-4ac is zero then the equation has one double solution.

To solve the problem, first write the given equation in standard form:

2x^{2}-3x-2=0

Applying the formulas:

x_{1}=\dfrac{-\left(-3\right)-\sqrt{\left(-3\right)^{2}-4\left(2\right)\left(-2\right)}}{2\left(2\right)}=\dfrac{3-\sqrt{25}}{4}=-\dfrac{1}{2}

x_{2}=\dfrac{-\left(-3\right)+\sqrt{\left(-3\right)^{2}-4\left(2\right)\left(-2\right)}}{2\left(2\right)}=\dfrac{3+\sqrt{25}}{4}=2

The solutions of the equation 2x^2-3x+1=3 are -\dfrac{1}{2} and 2.

4x^2+5x-3=17x-12

The solutions of the equation ax^{2}+bx+c=0 are:

  • x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
  • x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}

If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.

If b^{2}-4ac is zero then the equation has one double solution.

To solve the problem, first write the given equation in standard form:

4x^{2}-12x+9=0

Applying the formulas:

x_{1}=\dfrac{-\left(-12\right)-\sqrt{\left(-12\right)^{2}-4\left(4\right)\left(9\right)}}{2\left(4\right)}=\dfrac{12-\sqrt{0}}{8}=\dfrac{3}{2}

x_{2}=\dfrac{-\left(-12\right)+\sqrt{\left(-12\right)^{2}-4\left(4\right)\left(9\right)}}{2\left(4\right)}=\dfrac{12+\sqrt{0}}{8}=\dfrac{3}{2}

The solution of the equation 4x^2+5x-3=17x-12 is \dfrac{3}{2}.

7x^2+10x-20=x^{2}-x+15

The solutions of the equation ax^{2}+bx+c=0 are:

  • x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
  • x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}

If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.

If b^{2}-4ac is zero then the equation has one double solution.

To solve the problem, first write the given equation in standard form:

6x^{2}+11x-35=0

Applying the formulas:

x_{1}=\dfrac{-11-\sqrt{\left(11\right)^{2}-4\left(6\right)\left(-35\right)}}{2\left(6\right)}=\dfrac{-11-\sqrt{961}}{12}=-\dfrac{7}{2}

x_{2}=\dfrac{-11+\sqrt{\left(11\right)^{2}-4\left(6\right)\left(-35\right)}}{2\left(6\right)}=\dfrac{-11+\sqrt{961}}{12}=\dfrac{5}{3}

The solutions of the equation 7x^2+10x-20=x^{2}-x+15 are -\dfrac{7}{2} and \dfrac{5}{3}.

\left(2x+1\right)\left(x+7\right)=10x-3

The solutions of the equation ax^{2}+bx+c=0 are:

  • x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
  • x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}

If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.

If b^{2}-4ac is zero then the equation has one double solution.

To solve the problem, first write the given equation in standard form:

2x^{2}+15x+7=10x-3

2x^{2}+5x+10=0

Applying the formulas:

x_{1}=\dfrac{-5-\sqrt{\left(5\right)^{2}-4\left(2\right)\left(10\right)}}{2\left(2\right)}=\dfrac{-5-\sqrt{-55}}{4} which is not a real number.

x_{2}=\dfrac{-5+\sqrt{\left(5\right)^{2}-4\left(2\right)\left(10\right)}}{2\left(2\right)}=\dfrac{-5+\sqrt{-55}}{4} which is not a real number.

The equation \left(2x+1\right)\left(x+7\right)=10x-3 has no real solutions.

x^{2}=16x

The solutions of the equation ax^{2}+bx+c=0 are:

  • x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
  • x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}

If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.

If b^{2}-4ac is zero then the equation has one double solution.

To solve the problem, first write the given equation in standard form:

x^{2}-16x=0

Applying the formulas:

x_{1}=\dfrac{-\left(-16\right)-\sqrt{\left(-16\right)^{2}-4\left(1\right)\left(0\right)}}{2\left(1\right)}=\dfrac{16-\sqrt{256}}{2}=0

x_{2}=\dfrac{-\left(-16\right)+\sqrt{\left(-16\right)^{2}-4\left(1\right)\left(0\right)}}{2\left(1\right)}=\dfrac{16+\sqrt{256}}{2}=16

The solutions of the equation x^{2}=16x are x=0 and x=16.

2x^{2}=x+6

The solutions of the equation ax^{2}+bx+c=0 are:

  • x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
  • x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}

If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.

If b^{2}-4ac is zero then the equation has one double solution.

To solve the problem, first write the given equation in standard form:

2x^{2}-x-6=0

Applying the formulas:

x_{1}=\dfrac{-\left(-1\right)-\sqrt{\left(-1\right)^{2}-4\left(2\right)\left(-6\right)}}{2\left(2\right)}=\dfrac{1-\sqrt{49}}{4}=-\dfrac{3}{2}

x_{2}=\dfrac{-\left(-1\right)+\sqrt{\left(-1\right)^{2}-4\left(2\right)\left(-6\right)}}{2\left(2\right)}=\dfrac{1+\sqrt{49}}{4}=2

The solutions of the equation 2x^{2}=x+6 are x=-\dfrac{3}{2} and x=2.

\left(3x+1\right)\left(x-5\right)=-x^{2}-12x-4

The solutions of the equation ax^{2}+bx+c=0 are:

  • x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
  • x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}

If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.

If b^{2}-4ac is zero then the equation has one double solution.

To solve the problem, first write the given equation in standard form:

3x^{2}-14x-5=-x^{2}-12x-4

4x^{2}-2x-1=0

Applying the formulas:

x_{1}=\dfrac{-\left(-2\right)-\sqrt{\left(-2\right)^{2}-4\left(4\right)\left(-1\right)}}{2\left(4\right)}=\dfrac{2-\sqrt{20}}{8}=\dfrac{2-2\sqrt{5}}{8}=\dfrac{1-\sqrt{5}}{4}

x_{2}=\dfrac{-\left(-2\right)+\sqrt{\left(-2\right)^{2}-4\left(4\right)\left(-1\right)}}{2\left(4\right)}=\dfrac{2+\sqrt{20}}{8}=\dfrac{2+2\sqrt{5}}{8}=\dfrac{1+\sqrt{5}}{4}

The solutions of the equation \left(3x+1\right)\left(x-5\right)=-x^{2}-12x-4 are x=\dfrac{1-\sqrt{5}}{4} and x=\dfrac{1+\sqrt{5}}{4}.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Quadratic functions
  • Exercise : Match curves and quadratic functions
  • Exercise : Convert between the expanded form and the vertex form of a quadratic function
  • Exercise : Calculate the average rate of change of a quadratic function
  • Exercise : Solve quadratic inequalities with calculations
  • support@kartable.com
  • Legal notice

© Kartable 2026