Solve the following equations.
2x^2-3x+1=3
The solutions of the equation ax^{2}+bx+c=0 are:
- x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
- x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}
If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.
If b^{2}-4ac is zero then the equation has one double solution.
To solve the problem, first write the given equation in standard form:
2x^{2}-3x-2=0
Applying the formulas:
x_{1}=\dfrac{-\left(-3\right)-\sqrt{\left(-3\right)^{2}-4\left(2\right)\left(-2\right)}}{2\left(2\right)}=\dfrac{3-\sqrt{25}}{4}=-\dfrac{1}{2}
x_{2}=\dfrac{-\left(-3\right)+\sqrt{\left(-3\right)^{2}-4\left(2\right)\left(-2\right)}}{2\left(2\right)}=\dfrac{3+\sqrt{25}}{4}=2
The solutions of the equation 2x^2-3x+1=3 are -\dfrac{1}{2} and 2.
4x^2+5x-3=17x-12
The solutions of the equation ax^{2}+bx+c=0 are:
- x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
- x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}
If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.
If b^{2}-4ac is zero then the equation has one double solution.
To solve the problem, first write the given equation in standard form:
4x^{2}-12x+9=0
Applying the formulas:
x_{1}=\dfrac{-\left(-12\right)-\sqrt{\left(-12\right)^{2}-4\left(4\right)\left(9\right)}}{2\left(4\right)}=\dfrac{12-\sqrt{0}}{8}=\dfrac{3}{2}
x_{2}=\dfrac{-\left(-12\right)+\sqrt{\left(-12\right)^{2}-4\left(4\right)\left(9\right)}}{2\left(4\right)}=\dfrac{12+\sqrt{0}}{8}=\dfrac{3}{2}
The solution of the equation 4x^2+5x-3=17x-12 is \dfrac{3}{2}.
7x^2+10x-20=x^{2}-x+15
The solutions of the equation ax^{2}+bx+c=0 are:
- x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
- x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}
If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.
If b^{2}-4ac is zero then the equation has one double solution.
To solve the problem, first write the given equation in standard form:
6x^{2}+11x-35=0
Applying the formulas:
x_{1}=\dfrac{-11-\sqrt{\left(11\right)^{2}-4\left(6\right)\left(-35\right)}}{2\left(6\right)}=\dfrac{-11-\sqrt{961}}{12}=-\dfrac{7}{2}
x_{2}=\dfrac{-11+\sqrt{\left(11\right)^{2}-4\left(6\right)\left(-35\right)}}{2\left(6\right)}=\dfrac{-11+\sqrt{961}}{12}=\dfrac{5}{3}
The solutions of the equation 7x^2+10x-20=x^{2}-x+15 are -\dfrac{7}{2} and \dfrac{5}{3}.
\left(2x+1\right)\left(x+7\right)=10x-3
The solutions of the equation ax^{2}+bx+c=0 are:
- x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
- x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}
If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.
If b^{2}-4ac is zero then the equation has one double solution.
To solve the problem, first write the given equation in standard form:
2x^{2}+15x+7=10x-3
2x^{2}+5x+10=0
Applying the formulas:
x_{1}=\dfrac{-5-\sqrt{\left(5\right)^{2}-4\left(2\right)\left(10\right)}}{2\left(2\right)}=\dfrac{-5-\sqrt{-55}}{4} which is not a real number.
x_{2}=\dfrac{-5+\sqrt{\left(5\right)^{2}-4\left(2\right)\left(10\right)}}{2\left(2\right)}=\dfrac{-5+\sqrt{-55}}{4} which is not a real number.
The equation \left(2x+1\right)\left(x+7\right)=10x-3 has no real solutions.
x^{2}=16x
The solutions of the equation ax^{2}+bx+c=0 are:
- x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
- x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}
If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.
If b^{2}-4ac is zero then the equation has one double solution.
To solve the problem, first write the given equation in standard form:
x^{2}-16x=0
Applying the formulas:
x_{1}=\dfrac{-\left(-16\right)-\sqrt{\left(-16\right)^{2}-4\left(1\right)\left(0\right)}}{2\left(1\right)}=\dfrac{16-\sqrt{256}}{2}=0
x_{2}=\dfrac{-\left(-16\right)+\sqrt{\left(-16\right)^{2}-4\left(1\right)\left(0\right)}}{2\left(1\right)}=\dfrac{16+\sqrt{256}}{2}=16
The solutions of the equation x^{2}=16x are x=0 and x=16.
2x^{2}=x+6
The solutions of the equation ax^{2}+bx+c=0 are:
- x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
- x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}
If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.
If b^{2}-4ac is zero then the equation has one double solution.
To solve the problem, first write the given equation in standard form:
2x^{2}-x-6=0
Applying the formulas:
x_{1}=\dfrac{-\left(-1\right)-\sqrt{\left(-1\right)^{2}-4\left(2\right)\left(-6\right)}}{2\left(2\right)}=\dfrac{1-\sqrt{49}}{4}=-\dfrac{3}{2}
x_{2}=\dfrac{-\left(-1\right)+\sqrt{\left(-1\right)^{2}-4\left(2\right)\left(-6\right)}}{2\left(2\right)}=\dfrac{1+\sqrt{49}}{4}=2
The solutions of the equation 2x^{2}=x+6 are x=-\dfrac{3}{2} and x=2.
\left(3x+1\right)\left(x-5\right)=-x^{2}-12x-4
The solutions of the equation ax^{2}+bx+c=0 are:
- x_{1}=\dfrac{-b-\sqrt{b^{2}-4ac}}{2a}
- x_{2}=\dfrac{-b+\sqrt{b^{2}-4ac}}{2a}
If b^{2}-4ac (which is called the discriminant) is negative then the equation has no real solutions.
If b^{2}-4ac is zero then the equation has one double solution.
To solve the problem, first write the given equation in standard form:
3x^{2}-14x-5=-x^{2}-12x-4
4x^{2}-2x-1=0
Applying the formulas:
x_{1}=\dfrac{-\left(-2\right)-\sqrt{\left(-2\right)^{2}-4\left(4\right)\left(-1\right)}}{2\left(4\right)}=\dfrac{2-\sqrt{20}}{8}=\dfrac{2-2\sqrt{5}}{8}=\dfrac{1-\sqrt{5}}{4}
x_{2}=\dfrac{-\left(-2\right)+\sqrt{\left(-2\right)^{2}-4\left(4\right)\left(-1\right)}}{2\left(4\right)}=\dfrac{2+\sqrt{20}}{8}=\dfrac{2+2\sqrt{5}}{8}=\dfrac{1+\sqrt{5}}{4}
The solutions of the equation \left(3x+1\right)\left(x-5\right)=-x^{2}-12x-4 are x=\dfrac{1-\sqrt{5}}{4} and x=\dfrac{1+\sqrt{5}}{4}.