01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra II
  4. Exercise : Convert equations of hyperbolas from general to standard form

Convert equations of hyperbolas from general to standard form Algebra II

Convert the following equations of hyperbolas into their standard form.

x^2-y^2-4x-4y=4

To convert the equation into the standard form, complete the square. Assume that an expression is given:

aX^2+ bX

To complete the square, add and subtract \left(\dfrac{b}{2a}\right)^2 :

x^2-y^2-4x-4y=4

\left(x^2-4x\right)-\left(y^2+4y\right)=4

\left[x^2-4x + \left(\dfrac{4}{2}\right)^2- \left(\dfrac{4}{2}\right)^2\right] -\left[y^2+4y +\left(\dfrac{4}{2}\right)^2-\left(\dfrac{4}{2}\right)^2\right]=4

\left[x^2-4x +4-4\right] -\left[y^2+4y +4-4\right]=4

\left(x^2-4x + 4\right)- 4 -\left(y^2+4y +4\right)+ 4=4

\left(x-2\right)^2-\left(y-2\right)^2=4

\dfrac{\left(x - 2\right)^2}4 - \dfrac{\left(y - 2\right)^2} 4 = 1

The standard form of the equation is:

\dfrac{\left(x - 2\right)^2}4 - \dfrac{\left(y - 2\right)^2} 4 = 1

x^2-y^2-6x+2y=1

To convert the equation into the standard form, complete the square. Assume that an expression is given:

aX^2+ bX

To complete the square, add and subtract \left(\dfrac{b}{2a}\right)^2 :

x^2-y^2-6x+2y=1

\left(x^2-6x\right)-\left(y^2-2y\right)=1

\left[x^2-6x + \left(\dfrac{6}{2}\right)^2- \left(\dfrac{6}{2}\right)^2\right] -\left[y^2-2y +\left(\dfrac{2}{2}\right)^2-\left(\dfrac{2}{2}\right)^2\right]=1

\left[x^2-6x +9-9\right] -\left[y^2-2y +1-1\right]=1

\left(x^2-6x + 9\right)- 9 -\left(y^2-2y +1\right)+1=1

\left(x-3\right)^2-\left(y-1\right)^2=9

\dfrac{\left(x - 3\right)^2}9 - \dfrac{\left(y - 1\right)^2} 9 = 1

The standard form of the equation is:

\dfrac{\left(x - 3\right)^2}9 - \dfrac{\left(y - 1\right)^2} 9 = 1

x^2-y^2+2x+4y=13

To convert the equation into the standard form, complete the square. Assume that an expression is given:

aX^2+ bX

To complete the square, add and subtract \left(\dfrac{b}{2a}\right)^2 :

x^2-y^2+2x+4y=13

\left(x^2+2x\right)-\left(y^2-4y\right)=13

\left[x^2+2x + \left(\dfrac{2}{2}\right)^2- \left(\dfrac{2}{2}\right)^2\right] -\left[y^2-4y +\left(\dfrac{4}{2}\right)^2-\left(\dfrac{4}{2}\right)^2\right]=13

\left[x^2+2x+1-1\right] -\left[y^2-4y +4-4\right]=13

\left(x^2+2x + 1\right)- 1 -\left(y^2-4y +4\right)+ 4=13

\left(x+1\right)^2-\left(y-2\right)^2=10

\dfrac{\left(x +1\right)^2}{10} - \dfrac{\left(y - 2\right)^2}{10} = 1

The standard form of the equation is:

\dfrac{\left(x +1\right)^2}{10} - \dfrac{\left(y - 2\right)^2}{10} = 1

x^2-y^2-4x-2y=9

To convert the equation into the standard form, complete the square. Assume that an expression is given:

aX^2+ bX

To complete the square, add and subtract \left(\dfrac{b}{2a}\right)^2 :

x^2-y^2-4x-2y=9

\left(x^2-4x\right)-\left(y^2+2y\right)=9

\left[x^2-4x + \left(\dfrac{4}{2}\right)^2- \left(\dfrac{4}{2}\right)^2\right] -\left[y^2+2y +\left(\dfrac{2}{2}\right)^2-\left(\dfrac{2}{2}\right)^2\right]=9

\left[x^2-4x +4-4\right] -\left[y^2+2y +1-1\right]=9

\left(x^2-4x + 4\right)- 4 -\left(y^2+2y +1\right)+ 1=9

\left(x-2\right)^2-\left(y+1\right)^2=12

\dfrac{\left(x - 2\right)^2}{12} - \dfrac{\left(y+1\right)^2} {12} = 1

The standard form of the equation is:

\dfrac{\left(x - 2\right)^2}{12} - \dfrac{\left(y+1\right)^2} {12} = 1

x^2-y^2+6x+4y=20

To convert the equation into the standard form, complete the square. Assume that an expression is given:

aX^2+ bX

To complete the square, add and subtract \left(\dfrac{b}{2a}\right)^2 :

x^2-y^2+6x+4y=20

\left(x^2+6x\right)-\left(y^2-4y\right)=20

\left[x^2+6x + \left(\dfrac{6}{2}\right)^2- \left(\dfrac{6}{2}\right)^2\right] -\left[y^2-4y +\left(\dfrac{4}{2}\right)^2-\left(\dfrac{4}{2}\right)^2\right]=20

\left[x^2+6x +9-9\right] -\left[y^2-4y +4-4\right]=20

\left(x^2+6x +9\right)-9 -\left(y^2-4y +4\right)+ 4=20

\left(x+3\right)^2-\left(y-2\right)^2=25

\dfrac{\left(x +3\right)^2}{25} - \dfrac{\left(y - 2\right)^2} {25} = 1

The standard form of the equation is:

\dfrac{\left(x +3\right)^2}{25} - \dfrac{\left(y - 2\right)^2} {25} = 1

x^2-y^2-8x-2y=-10

To convert the equation into standard form, complete the square. Assume that an expression is given:

aX^2+ bX

To complete the square, add and subtract \left(\dfrac{b}{2a}\right)^2 :

x^2-y^2-8x-2y=-10

\left(x^2-8x\right)-\left(y^2+2y\right)=-10

\left[x^2-8x + \left(\dfrac{8}{2}\right)^2- \left(\dfrac{8}{2}\right)^2\right] -\left[y^2+2y +\left(\dfrac{2}{2}\right)^2-\left(\dfrac{2}{2}\right)^2\right]=-10

\left[x^2-8x +16-16\right] -\left[y^2+2y +1-1\right]=-10

\left(x^2-8x + 16\right)-16 -\left(y^2+2y +1\right)+1=-10

\left(x-4\right)^2-\left(y+1\right)^2=5

\dfrac{\left(x - 4\right)^2}5 - \dfrac{\left(y + 1\right)^2}5 = 1

The standard form of the equation is:

\dfrac{\left(x - 4\right)^2}5 - \dfrac{\left(y + 1\right)^2}5 = 1

x^2-y^2-10x-4y=-14

To convert the equation into standard form, complete the square. Assume that an expression is given:

aX^2+ bX

To complete the square, add and subtract \left(\dfrac{b}{2a}\right)^2 e:

x^2-y^2-10x-4y=-14

\left(x^2-10x\right)-\left(y^2+4y\right)=-14

\left[x^2-10x + \left(\dfrac{10}{2}\right)^2- \left(\dfrac{10}{2}\right)^2\right] -\left[y^2+4y +\left(\dfrac{4}{2}\right)^2-\left(\dfrac{4}{2}\right)^2\right]=-14

\left[x^2-10x +25-25\right] -\left[y^2+4y +4-4\right]=-14

\left(x^2-10x +25\right)- 25 -\left(y^2+4y +4\right)+ 4=-14

\left(x-5\right)^2-\left(y+2\right)^2=7

\dfrac{\left(x - 5\right)^2}7 - \dfrac{\left(y+ 2\right)^2} 7 = 1

The standard form of the equation is:

\dfrac{\left(x - 5\right)^2}7 - \dfrac{\left(y+ 2\right)^2} 7 = 1

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Hyperbolas
  • Exercise : Write equations of hyperbolas from graphs
  • support@kartable.com
  • Legal notice

© Kartable 2026