Convert the following equations of parabolas into their vertex form.
y=2x^2-8x+12
y=2\left(x^2-4x\right)+12
y=2\left(x^2-4x+4-4\right)+12
y=2\left(x^2-4x+4\right)-8+12
y=2\left(x-2\right)^2+4
The equation is:
y=2\left(x-2\right)^2+4
y=-3x^2+12x-10
y=-3\left(x^2-4x\right)-10
y=-3\left(x^2-4x+4-4\right)-10
y=-3\left(x^2-4x+4\right)+12-10
y=-3\left(x-2\right)^2+2
The equation is:
y=-3\left(x-2\right)^2+2
y=5x^2+10x+1
y=5\left(x^2+2x\right)+1
y=5\left(x^2+2x+1-1\right)+1
y=5\left(x^2+2x+1\right)-5+1
y=5\left(x+1\right)^2-4
The equation is:
y=5\left(x+1\right)^2-4
y=-4x^2+8x-1
y=-4\left(x^2-2x\right)-1
y=-4\left(x^2-2x+1-1\right)-1
y=-4\left(x^2-2x+1\right)+4-1
y=-4\left(x-1\right)^2+3
The equation is:
y=-4\left(x-1\right)^2+3
x=-2y^2+12y-15
x=-2\left(y^2+6y\right)-15
x=-2\left(y^2-6y+9-9\right)-15
x=-2\left(y^2-6y+9\right)+18-15
x=-2\left(y-3\right)^2+3
The equation is:
x=-2\left(y-3\right)^2+3
x=5y^2-20y-19
x=5\left(y^2-4y\right)-19
x=5\left(y^2-4y+4-4\right)-19
x=5\left(y^2-4y+4\right)+20-19
x=5\left(y-2\right)^2+1
The equation is:
x=5\left(y-2\right)^2+1
x=-3y^2-24y-45
x=-3\left(y^2+8y\right)-45
x=-3\left(y^2+8y+16-16\right)-45
x=-3\left(y^2+8y+16\right)+48-45
x=-3\left(y+4\right)^2+3
The equation is:
x=-3\left(y+4\right)^2+3