01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Determine the continuity of a piecewise function at a point

Determine the continuity of a piecewise function at a point Calculus

Is the following function continuous at x=2 ?

f\left(x\right)=\begin{cases} x^{2}-3x+5 \ \text{ if }\ x\leqslant2 \cr \cr \dfrac{x+13}{2x+1}\ \text{ if }\ x\gt2 \end{cases}

A function f is continuous in x=a if and only if:

\lim\limits_{x \to a \atop x \lt a}f\left(x\right)=\lim\limits_{x \to a \atop x \gt a}f\left(x\right)=f\left(a\right)

In our problem:

\lim\limits_{x \to 2 \atop x \lt 2}f\left(x\right)=\lim\limits_{x \to 2 \atop x \lt 2}\left( x^{2}-3x+5 \right)=\left(2\right)^{2}-3\left(2\right)+5=3

\lim\limits_{x \to 2 \atop x \gt 2}=\lim\limits_{x \to 2 \atop x \gt 2}\left( \dfrac{x+13}{2x+1} \right)=\dfrac{\left(2\right)+13}{2\left(2\right)+1}=3

f\left(2\right)=\left(2\right)^{2}-3\left(2\right)+5=3

Therefore:

\lim\limits_{x \to 2 \atop x \lt 2}f\left(x\right)=\lim\limits_{x \to 2 \atop x \gt 2}f\left(x\right)=f\left(2\right)

We conclude that f is continuous at x=2.

Is the following function continuous at x=3 ?

f\left(x\right)=\begin{cases} \sqrt{x^{2}+5x+12} \ \text{ if }\ x\leqslant3 \cr \cr 7x-15\ \text{ if }\ x\gt3 \end{cases}

A function f is continuous in x=a if and only if:

\lim\limits_{x \to a \atop x \lt a}f\left(x\right)=\lim\limits_{x \to a \atop x \gt a}f\left(x\right)=f\left(a\right)

In our problem:

\lim\limits_{x \to 3 \atop x \lt 3}f\left(x\right)=\lim\limits_{x \to 3 \atop x \lt 3}\left( \sqrt{x^{2}+5x+12}\right)=\sqrt{\left(3\right)^{2}+5\left(3\right)+12}=6

\lim\limits_{x \to 3 \atop x \gt 3}=\lim\limits_{x \to 3 \atop x \gt 3}\left( 7x-15 \right)=7\left(3\right)-15=6

f\left(3\right)=\sqrt{\left(3\right)^{2}+5\left(3\right)+12}=6

Therefore:

\lim\limits_{x \to 3 \atop x \lt 3}f\left(x\right)=\lim\limits_{x \to 3 \atop x \gt 3}f\left(x\right)=f\left(3\right)

We conclude that f is continuous at x=3.

Is the following function continuous at x=2 ?

f\left(x\right)=\begin{cases} \dfrac{\sin\left(x-2\right)}{x-2}\ \text{ if }\ x\lt2 \cr \cr \log_3\left(x^{2}-1\right)\ \text{ if }\ x\geqslant2 \end{cases}

A function f is continuous in x=a if and only if:

\lim\limits_{x \to a \atop x \lt a}f\left(x\right)=\lim\limits_{x \to a \atop x \gt a}f\left(x\right)=f\left(a\right)

In our problem:

\lim\limits_{x \to 2 \atop x \lt 2}f\left(x\right)=\lim\limits_{x \to 2 \atop x \lt 2}\left( \dfrac{\sin\left(x-2\right)}{x-2}\right)=1

\lim\limits_{x \to 2 \atop x \gt 2}=\lim\limits_{x \to 2 \atop x \gt 2}\left( \log_3\left(x^{2}-1\right)\right)=\log_3\left(3\right)=1

f\left(2\right)=\log_3\left(3\right)=1

Therefore:

\lim\limits_{x \to 2 \atop x \lt 2}f\left(x\right)=\lim\limits_{x \to 2 \atop x \gt 2}f\left(x\right)=f\left(2\right)

We conclude that f is continuous at x=2.

Is the following function continuous at x=-1 ?

f\left(x\right)=\begin{cases} \dfrac{3x-5}{x-3}\ \text{ if }\ x\lt-1 \cr \cr x+3 \text{ if }\ x\geqslant-1 \end{cases}

A function f is continuous in x=a if and only if:

\lim\limits_{x \to a \atop x \lt a}f\left(x\right)=\lim\limits_{x \to a \atop x \gt a}f\left(x\right)=f\left(a\right)

In our problem:

\lim\limits_{x \to -1 \atop x \lt -1}f\left(x\right)=\lim\limits_{x \to -1 \atop x \lt -1}\left( \dfrac{3x-5}{x-3}\right)=2

\lim\limits_{x \to -1 \atop x \gt -1}=\lim\limits_{x \to -1 \atop x \gt -1}\left( x+3\right)=2

f\left(-1\right)=\left(-1\right)+3=2

Therefore:

\lim\limits_{x \to -1 \atop x \lt -1}f\left(x\right)=\lim\limits_{x \to -1 \atop x \gt -1}f\left(x\right)=f\left(-1\right)

We conclude that f is continuous at x=-1.

Is the following function continuous at x=\dfrac{7\pi}{9} ?

f\left(x\right)=\begin{cases}\cos\left(3x-2\pi\right)\ \text{ if }\ x\lt\dfrac{7\pi}{9} \cr \cr \sin\left(\dfrac{9x}{7}\right)+\dfrac{1}{2}\text{ if }\ x\geqslant\dfrac{7\pi}{9} \end{cases}

A function f is continuous in x=a if and only if:

\lim\limits_{x \to a \atop x \lt a}f\left(x\right)=\lim\limits_{x \to a \atop x \gt a}f\left(x\right)=f\left(a\right)

In our problem:

\lim\limits_{x \to \frac{7\pi}{9} \atop x \lt \frac{7\pi}{9} }f\left(x\right)=\lim\limits_{x \to \frac{7\pi}{9} \atop x \lt \frac{7\pi}{9} }\left( \cos\left(3x-2\pi\right)\right)=\cos\left(\dfrac{\pi}{3}\right)=\dfrac{1}{2}

\lim\limits_{x \to \frac{7\pi}{9} \atop x \gt \frac{7\pi}{9} }=\lim\limits_{x \to \frac{7\pi}{9} \atop x \gt \frac{7\pi}{9} }\left( \sin\left(\dfrac{9x}{7}\right)+\dfrac{1}{2}\right)=\sin\left(\pi\right)+\dfrac{1}{2}=\dfrac{1}{2}

f\left( \dfrac{7\pi}{9} \right)=\sin\left(\pi\right)+\dfrac{1}{2}=\dfrac{1}{2}

Therefore:

\lim\limits_{x \to \frac{7\pi}{9} \atop x \lt \frac{7\pi}{9}}f\left(x\right)=\lim\limits_{x \to \frac{7\pi}{9} \atop x \gt \frac{7\pi}{9}}f\left(x\right)=f\left( \dfrac{7\pi}{9} \right)

We conclude that f is continuous at x=\dfrac{7\pi}{9}.

Is the following function continuous at x=4 ?

f\left(x\right)=\begin{cases}\sqrt{2x+1} \text{ if }\ x\lt4\cr \cr \dfrac{5x+4}{x+2}\text{ if }\ x\geqslant4 \end{cases}

A function f is continuous in x=a if and only if:

\lim\limits_{x \to a \atop x \lt a}f\left(x\right)=\lim\limits_{x \to a \atop x \gt a}f\left(x\right)=f\left(a\right)

In our problem:

\lim\limits_{x \to 4\atop x \lt 4 }f\left(x\right)=\lim\limits_{x \to 4 \atop x \lt 4}\sqrt{2x+1}=\sqrt{9}=3

\lim\limits_{x \to 4 \atop x \gt 4 }=\lim\limits_{x \to 4 \atop x \gt4 }\left( \dfrac{5x+4}{x+2}\right)=4

f\left( 4 \right)=\dfrac{5\left(4\right)+4}{\left(4\right)+2}=4

Therefore:

\lim\limits_{x \to4\atop x \lt 4}f\left(x\right)\neq\lim\limits_{x \to 4 \atop x \gt 4}f\left(x\right)

We conclude that f is not continuous at x=4.

Is the following function continuous at x=1 ?

f\left(x\right)=\begin{cases}\dfrac{2x^{2}+3x-5}{x-6} \text{ if }\ x\lt1\cr \cr \ln\left(x\right)+3\text{ if }\ x\geqslant1 \end{cases}

A function f is continuous in x=a if and only if:

\lim\limits_{x \to a \atop x \lt a}f\left(x\right)=\lim\limits_{x \to a \atop x \gt a}f\left(x\right)=f\left(a\right)

In our problem:

\lim\limits_{x \to 1\atop x \lt 1 }f\left(x\right)=\lim\limits_{x \to 1 \atop x \lt 1}\dfrac{2x^{2}+3x-5}{x-6}=0

\lim\limits_{x \to 1 \atop x \gt 1 }=\lim\limits_{x \to 1 \atop x \gt1 }\left( \ln\left(x\right)+3\right)=3

f\left( 1 \right)=\ln\left(1\right)+3=3

Therefore:

\lim\limits_{x \to1\atop x \lt 1}f\left(x\right)\neq\lim\limits_{x \to 1 \atop x \gt 1}f\left(x\right)

We conclude that f is not continuous at x=1.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Continuity of functions
  • Exercise : Use the intermediate value theorem to make statements about a function
  • support@kartable.com
  • Legal notice

© Kartable 2026