Simplify the following expressions.
2^{3x}
For any two integers m and n :
\left( x^{m} \right)^{n}=x^{m\cdot n}
In our problem, applying the formula from right to left:
2^{3\cdot x}=\left( 2^{3} \right)^{x}
Using the definition of a power:
2^{3}=2\cdot2\cdot2=8
We conclude that:
2^{3x}=8^x
3^{4x}
For any two integers m and n :
\left( x^{m} \right)^{n}=x^{m\cdot n}
In our problem, applying the formula from right to left:
3^{4\cdot x}=\left( 3^{4} \right)^{x}
Using the definition of a power:
3^{4}=3\cdot3\cdot3\cdot3=81
We conclude that:
3^{4x}=81^x
2^{-3x}
For any two integers m and n :
\left( x^{m} \right)^{n}=x^{m\cdot n}
In our problem, applying the formula from right to left:
2^{-3\cdot x}=\left( 2^{-3} \right)^{x}
Using the definition of a power:
2^{-3}=\dfrac{1}{2\cdot2\cdot2}=\dfrac{1}{8}
We conclude that:
2^{-3x}=\left( \dfrac{1}{8} \right)^x
\left( \dfrac{1}{5} \right)^{-2x}
For any two integers m and n :
\left( x^{m} \right)^{n}=x^{m\cdot n}
In our problem, applying the formula from right to left:
\left( \dfrac{1}{5} \right)^{-2\cdot x}=\left( \left( \dfrac{1}{5} \right)^{-2} \right)^{x}
Using the definition of a power:
\left( \dfrac{1}{5} \right)^{-2}=5\cdot5=25
We conclude that:
\left( \dfrac{1}{5} \right)^{-2x}=25^x
10^{2x}
For any two integers m and n :
\left( x^{m} \right)^{n}=x^{m\cdot n}
In our problem, applying the formula from right to left:
10^{2\cdot x}=\left( 10^{2} \right)^{x}
Using the definition of a power:
10^{2}=10\cdot10=100
We conclude that:
10^{2x}=100^{x}
4^{-3x}
For any two integers m and n :
\left( x^{m} \right)^{n}=x^{m\cdot n}
In our problem, applying the formula from right to left:
4^{-3\cdot x}=\left( 4^{-3} \right)^{x}
Using the definition of a power:
4^{-3}=\dfrac{1}{4\cdot4\cdot4}=\dfrac{1}{64}
We conclude that:
4^{-3x}=\left( \dfrac{1}{64}\right)^{x}
\left( \dfrac{2}{3} \right)^{-x}
For any two integers m and n :
\left( x^{m} \right)^{n}=x^{m\cdot n}
In our problem, applying the formula from right to left:
\left( \dfrac{2}{3} \right)^{-x}=\left( \left( \dfrac{2}{3} \right)^{-1} \right)^{x}
Using the definition of a power:
\left( \dfrac{2}{3} \right)^{-1}=\dfrac{3}{2}
We conclude that:
\left( \dfrac{2}{3} \right)^{-x}=\left( \dfrac{3}{2} \right)^{x}