01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Precalculus
  4. Exercise : Determine if a trigonometric function is odd or even

Determine if a trigonometric function is odd or even Precalculus

Determine if the following functions are even, odd, or neither of them.

f:x\longmapsto\sin\left(2x\right)-\cos\left(x\right)^2.\sin\left(x\right)

We have:

f\left(x\right)=\sin\left(2x\right)-\cos\left(x\right)^2.\sin\left(x\right)

Therefore:

f\left(-x\right)=\sin\left(-2x\right)-\cos\left(-x\right)^2.\sin\left(-x\right)

We know that:

  • \sin\left(x\right) is odd.
  • \cos\left(x\right) is even.

Thus:

f\left(-x\right)=-\sin\left(2x\right)-\cos\left(x\right)^2.\left[-\sin\left(x\right)\right]\\=-\sin\left(2x\right)+\cos\left(x\right)^2.\sin\left(x\right)\\=-\left(\sin\left(2x\right)-\cos\left(x\right)^2.\sin\left(x\right)\right)\\=-f\left(x\right)

This function is odd.

f:x\longmapsto \sin^2\left(2x\right)-\cos^2\left(x\right)

We have:

f\left(x\right)=\sin^2\left(2x\right)-\cos^2\left(x\right)

Therefore:

f\left(-x\right)=\sin^2\left(-2x\right)-\cos^2\left(-x\right)

We know that:

  • \sin\left(2x\right) is odd.
  • \cos\left(x\right) is even.

Thus:

f\left(-x\right)=\left[-\sin\left(2x\right)\right]^2-\left[\cos\left(x\right)^2\right]\\=\sin^2\left(2x\right)-\cos^2\left(x\right)\\=f\left(x\right)

This function is even.

f:x\longmapsto \tan\left(x\right)+\cot\left(x\right)

We have:

f\left(x\right)=\tan\left(x\right)+\cot\left(x\right)

Therefore:

f\left(-x\right)=\tan\left(-x\right)+\cot\left(-x\right)

We know that:

  • \tan\left(x\right) is odd.
  • \cot\left(x\right) is odd.

Thus:

f\left(-x\right)= -\tan\left(x\right) - \cot\left(x\right)\\=-\left(\tan\left(x\right)+\cot\left(x\right)\right)\\=-f\left(x\right)

This function is odd.

f:x\longmapsto\cos\left(x\right)\sin^2\left(x\right)+\cos^3\left(x\right).\sin^4\left(x\right)

We have:

f\left(x\right)=\cos\left(x\right)\sin^2\left(x\right)+\cos^3\left(x\right).\sin^4\left(x\right)

Therefore:

f\left(-x\right)=\cos\left(-x\right)\left[\sin\left(-x\right)\right]^2+\left[\cos\left(-x\right)\right]^3.\left[\sin\left(-x\right)\right]^4

We know that:

  • \sin\left(x\right) is odd.
  • \cos\left(x\right) is even.

Thus:

f\left(-x\right)=\cos\left(x\right)\left[-\sin\left(x\right)\right]^2+\cos\left(x\right)^3.\left[-\sin\left(x\right)\right]^4\\=\cos\left(x\right)\sin^2\left(x\right)+\cos^3\left(x\right).\sin^4\left(x\right)\\=f\left(x\right)

This function is even.

f\left(x\right) = \sin\left(x\right)+ \cos\left(x\right)

We have:

f\left(x\right)=\sin\left(x\right)+\cos\left(x\right)

Therefore:

f\left(-x\right)=\sin\left(-x\right)+\cos\left(-x\right)

We know that:

  • \sin\left(x\right) is odd.
  • \cos\left(x\right) is even.

Thus:

f\left(-x\right)= -\sin\left(x\right) +\cos\left(x\right)

And:

  • f\left(-x\right) \ne f\left(x\right)
  • f\left(-x\right) \ne -f\left(x\right)

This function is neither odd nor even.

f\left(x\right) = \sin\left(x\right)\left[1-\cos\left(x\right)\right]

We have:

f\left(x\right) = \sin\left(x\right)\left[1-\cos\left(x\right)\right]

Therefore:

f\left(-x\right) = \sin\left(-x\right)\left[1-\cos\left(-x\right)\right]

We know that:

  • \sin\left(x\right) is odd.
  • \cos\left(x\right) is even.

Thus:

f\left(-x\right) = -\sin\left(x\right)\left[1-\cos\left(x\right)\right]\\=-f\left(x\right)

This function is odd.

f\left(x\right)=\cos\left(x\right)\sin\left(x-\pi\right)+\cos\left(2x\right)\sin\left(x\right)

We have:

f\left(x\right)=\cos\left(x\right)\sin\left(x-\pi\right)+\cos\left(2x\right)\sin\left(x\right)

Therefore:

f\left(-x\right)=\cos\left(-x\right)\sin\left(-x-\pi\right)+\cos\left(-2x\right)\sin\left(-x\right)

We know that:

  • \sin\left(x\right) is odd.
  • \cos\left(x\right) is even.

Thus:

f\left(-x\right)=\cos\left(x\right)\left[-\sin\left(x+\pi\right)\right]+\cos\left(2x\right)\left[-\sin\left(x\right)\right]\\=- \cos\left(x\right)\sin\left(x+\pi\right)-\cos\left(2x\right)\sin\left(x\right)

For every angle \theta, we have:

\sin\left(\theta\right) = \sin\left(\theta + 2\pi\right)

Hence:

\sin\left(x-\pi\right) = \sin\left(x-\pi +2\pi\right) = \sin\left(x+\pi\right)

Therefore:

f\left(-x\right)=-\cos\left(x\right)\sin\left(x-\pi\right)-\cos\left(2x\right)\sin\left(x\right)\\=-f\left(x\right)

This function is odd.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Trigonometric functions
  • Exercise : Draw the variation table of a trigonometric function from a graph
  • support@kartable.com
  • Legal notice

© Kartable 2026