Are the following functions odd?
f : x\longmapsto \dfrac{2x}{3-x^2}
A function is odd if :
The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.
Here, we have:
f(x) exists if, and only if, 3-x^2\neq 0,
that is to say x\neq \sqrt{3} and x\neq -\sqrt{3}.
Therefore, the domain of f is \mathcal{D}=\mathbb{R}-\left\{-\sqrt{3},\sqrt{3}\right\}, which is symmetric about 0.
Let x be a real number in \mathcal{D}.
f\left(x\right) = \dfrac{2x}{3 - x^2}
We also have:
f\left(-x\right) = \dfrac{2\left(-x\right)}{3 - \left[-x\right]^2}
f\left(-x\right) = \dfrac{-2x}{3 - x^2}
f\left(-x\right) = -\dfrac{2x}{3 - x^2}
f\left(-x\right) = -\left( \dfrac{2x}{3 - x^2} \right)
Therefore:
f\left(-x\right) = -f\left(x\right)
f is an odd function.
f : x\longmapsto x^4 - x^3 + 7
A function is odd if :
The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.
Here, we have:
The domain of f is \mathbb{R}, which is symmetric about 0.
Let x be a real number.
f\left(x\right) = x^4 - x^3 + 7
We also have:
f\left(-x\right) = \left(-x\right)^4 + \left(-x\right)^3 + 7
f\left(-x\right) = x^4 - \left(-x^3\right) + 7
f\left(-x\right) = x^4 + x^3 + 7
Note that:
-f\left(x\right) = -\left(x^4\right) + x^3 + 7
Therefore:
f\left(x\right) \neq -f\left(x\right)
f is not an odd function.
f : x\longmapsto \dfrac{\sqrt{x^4 - x^2}}{x}
A function is odd if :
The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.
Here, we have:
f(x) exists if, and only if, x^4-x^2\geq 0 and x\neq 0.
x^4-x^2\geq 0 if, and only if, x^2\left(x^2-1\right)\geq 0,
that is to say x\leq -1 or x\geq 1.
Therefore, the domain of f is \mathcal{D}=(-\infty,-1]\cup[1,\infty), which is symmetric about 0.
Let x be a real number in \mathcal{D}.
f\left(x\right) = \dfrac{\sqrt{x^4 - x^2}}{x}
We also have:
f\left(-x\right) = \dfrac{\sqrt{\left(-x\right)^4 - \left(-x\right)^2}}{-x}
f\left(-x\right) = \dfrac{\sqrt{x^4 - x^2}}{-x}
f\left(-x\right) = -\dfrac{\sqrt{x^4 - x^2}}{x}
Note that:
-f\left(x\right) = -\dfrac{\sqrt{x^4 - x^2}}{x}
Therefore:
f\left(x\right) = -f\left(x\right)
f is an odd function.
f : x\longmapsto \dfrac{\sqrt[3]{x}}{x^4}
A function is odd if :
The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.
Here, we have:
f(x) exists if, and only if, x^4\neq 0,
that is to say x\neq 0.
Therefore, the domain of f is \mathcal{D}=\mathbb{R}-\{0\}, which is symmetric about 0.
Let x be a real number in \mathcal{D}.
f\left(x\right) = \dfrac{\sqrt[3]{x}}{x^4}
We also have:
f\left(-x\right) = \dfrac{\sqrt[3]{-x}}{\left(-x\right)^4}
f\left(-x\right) = \dfrac{-\sqrt[3]{x}}{x^4}
f\left(-x\right) = -\dfrac{\sqrt[3]{x}}{x^4}
Note that:
-f\left(x\right) = -\dfrac{\sqrt[3]{x}}{x^4}
Therefore:
f\left(x\right) = -f\left(x\right)
f is an odd function.
f : x\longmapsto \dfrac{\sqrt[3]{x}}{x^5}
A function is odd if :
The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.
Here we have:
f(x) exists if, and only if, x^5\neq 0,
that is to say x\neq 0.
Therefore, the domain of f is \mathcal{D}=\mathbb{R}-\{0\}, which is symmetric about 0.
Let x be a real number in \mathcal{D}.
f\left(x\right) = \dfrac{\sqrt[3]{x}}{x^5}
We also have:
f\left(-x\right) = \dfrac{\sqrt[3]{-x}}{\left(-x\right)^5}
f\left(-x\right) = \dfrac{-\sqrt[3]{x}}{-\left(x^5\right)}
f\left(-x\right) = \dfrac{\sqrt[3]{x}}{x^5}
Note that:
-f\left(x\right) = -\dfrac{\sqrt[3]{x}}{x^5}
Therefore:
f\left(x\right) \neq -f\left(x\right)
f is not an odd function.
f : x\longmapsto \dfrac{x^2 + 4}{x^3 - x}
A function is odd if :
The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.
Here we have:
f(x) exists if, and only if, x^3-x\neq 0,
that is to say x\left(x^2-1\right)\neq 0.
Therefore, the domain of f is \mathcal{D}=\mathbb{R}-\{-1{,}0{,}1\}, which is symmetric about 0.
Let x be a real number in \mathcal{D}.
f\left(x\right) = \dfrac{x^2 + 4}{x^3 - x}
We also have:
f\left(-x\right) = \dfrac{\left(-x\right)^2 + 4}{\left(-x\right)^3 - \left(-x\right)}
f\left(-x\right) = \dfrac{x^2 + 4}{-\left(x^3\right) + x}
f\left(-x\right) = \dfrac{x^2 + 4}{-\left[x^3 -x\right]}
f\left(-x\right) = -\dfrac{x^2 + 4}{x^3 -x}
Note that:
-f\left(x\right) = - \dfrac{x^2 + 4}{x^3 -x}
Therefore:
f\left(x\right) = -f\left(x\right)
f is an odd function.
f : x\longmapsto x^5 + 4x^3 - x
A function is odd if :
The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.
Here we have:
The domain of f is \mathbb{R}, which is symmetric about 0.
Let x be a real number.
f\left(x\right) = x^5 + 4x^3 - x
We also have:
f\left(-x\right) = \left(-x\right)^5 + 4\left(-x\right)^3 - \left(-x\right)
f\left(-x\right) = -\left(x^5\right) - 4\left(x^3\right) + x
f\left(-x\right) = -\left(x^5 + 4x^3 - x\right)
Note that:
-f\left(x\right) = -\left(x^5 + 4x^3 - x\right)
Therefore:
f\left(x\right) = -f\left(x\right)
f is an odd function.