01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Precalculus
  4. Exercise : Identify odd functions from equations

Identify odd functions from equations Precalculus

Are the following functions odd?

f : x\longmapsto \dfrac{2x}{3-x^2}

A function is odd if :

The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.

Here, we have:

f(x) exists if, and only if, 3-x^2\neq 0,
that is to say x\neq \sqrt{3} and x\neq -\sqrt{3}.
Therefore, the domain of f is \mathcal{D}=\mathbb{R}-\left\{-\sqrt{3},\sqrt{3}\right\}, which is symmetric about 0.
Let x be a real number in \mathcal{D}.

f\left(x\right) = \dfrac{2x}{3 - x^2}

We also have:

f\left(-x\right) = \dfrac{2\left(-x\right)}{3 - \left[-x\right]^2}

f\left(-x\right) = \dfrac{-2x}{3 - x^2}

f\left(-x\right) = -\dfrac{2x}{3 - x^2}

f\left(-x\right) = -\left( \dfrac{2x}{3 - x^2} \right)

Therefore:

f\left(-x\right) = -f\left(x\right)

f is an odd function.

f : x\longmapsto x^4 - x^3 + 7

A function is odd if :

The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.

Here, we have:

The domain of f is \mathbb{R}, which is symmetric about 0.
Let x be a real number.

f\left(x\right) = x^4 - x^3 + 7

We also have:

f\left(-x\right) = \left(-x\right)^4 + \left(-x\right)^3 + 7

f\left(-x\right) = x^4 - \left(-x^3\right) + 7

f\left(-x\right) = x^4 + x^3 + 7

Note that:

-f\left(x\right) = -\left(x^4\right) + x^3 + 7

Therefore:

f\left(x\right) \neq -f\left(x\right)

f is not an odd function.

f : x\longmapsto \dfrac{\sqrt{x^4 - x^2}}{x}

A function is odd if :

The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.

Here, we have:

f(x) exists if, and only if, x^4-x^2\geq 0 and x\neq 0.
x^4-x^2\geq 0 if, and only if, x^2\left(x^2-1\right)\geq 0,
that is to say x\leq -1 or x\geq 1.
Therefore, the domain of f is \mathcal{D}=(-\infty,-1]\cup[1,\infty), which is symmetric about 0.
Let x be a real number in \mathcal{D}.

f\left(x\right) = \dfrac{\sqrt{x^4 - x^2}}{x}

We also have:

f\left(-x\right) = \dfrac{\sqrt{\left(-x\right)^4 - \left(-x\right)^2}}{-x}

f\left(-x\right) = \dfrac{\sqrt{x^4 - x^2}}{-x}

f\left(-x\right) = -\dfrac{\sqrt{x^4 - x^2}}{x}

Note that:

-f\left(x\right) = -\dfrac{\sqrt{x^4 - x^2}}{x}

Therefore:

f\left(x\right) = -f\left(x\right)

f is an odd function.

f : x\longmapsto \dfrac{\sqrt[3]{x}}{x^4}

A function is odd if :

The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.

Here, we have:

f(x) exists if, and only if, x^4\neq 0,
that is to say x\neq 0.
Therefore, the domain of f is \mathcal{D}=\mathbb{R}-\{0\}, which is symmetric about 0.
Let x be a real number in \mathcal{D}.

f\left(x\right) = \dfrac{\sqrt[3]{x}}{x^4}

We also have:

f\left(-x\right) = \dfrac{\sqrt[3]{-x}}{\left(-x\right)^4}

f\left(-x\right) = \dfrac{-\sqrt[3]{x}}{x^4}

f\left(-x\right) = -\dfrac{\sqrt[3]{x}}{x^4}

Note that:

-f\left(x\right) = -\dfrac{\sqrt[3]{x}}{x^4}

Therefore:

f\left(x\right) = -f\left(x\right)

f is an odd function.

f : x\longmapsto \dfrac{\sqrt[3]{x}}{x^5}

A function is odd if :

The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.

Here we have:

f(x) exists if, and only if, x^5\neq 0,
that is to say x\neq 0.
Therefore, the domain of f is \mathcal{D}=\mathbb{R}-\{0\}, which is symmetric about 0.
Let x be a real number in \mathcal{D}.

f\left(x\right) = \dfrac{\sqrt[3]{x}}{x^5}

We also have:

f\left(-x\right) = \dfrac{\sqrt[3]{-x}}{\left(-x\right)^5}

f\left(-x\right) = \dfrac{-\sqrt[3]{x}}{-\left(x^5\right)}

f\left(-x\right) = \dfrac{\sqrt[3]{x}}{x^5}

Note that:

-f\left(x\right) = -\dfrac{\sqrt[3]{x}}{x^5}

Therefore:

f\left(x\right) \neq -f\left(x\right)

f is not an odd function.

f : x\longmapsto \dfrac{x^2 + 4}{x^3 - x}

A function is odd if :

The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.

Here we have:

f(x) exists if, and only if, x^3-x\neq 0,
that is to say x\left(x^2-1\right)\neq 0.
Therefore, the domain of f is \mathcal{D}=\mathbb{R}-\{-1{,}0{,}1\}, which is symmetric about 0.
Let x be a real number in \mathcal{D}.

f\left(x\right) = \dfrac{x^2 + 4}{x^3 - x}

We also have:

f\left(-x\right) = \dfrac{\left(-x\right)^2 + 4}{\left(-x\right)^3 - \left(-x\right)}

f\left(-x\right) = \dfrac{x^2 + 4}{-\left(x^3\right) + x}

f\left(-x\right) = \dfrac{x^2 + 4}{-\left[x^3 -x\right]}

f\left(-x\right) = -\dfrac{x^2 + 4}{x^3 -x}

Note that:

-f\left(x\right) = - \dfrac{x^2 + 4}{x^3 -x}

Therefore:

f\left(x\right) = -f\left(x\right)

f is an odd function.

f : x\longmapsto x^5 + 4x^3 - x

A function is odd if :

The domain of f, \mathcal{D}, is symmetric about 0 and f(-x)=-f(x) for all x in \mathcal{D}.

Here we have:

The domain of f is \mathbb{R}, which is symmetric about 0.
Let x be a real number.

f\left(x\right) = x^5 + 4x^3 - x

We also have:

f\left(-x\right) = \left(-x\right)^5 + 4\left(-x\right)^3 - \left(-x\right)

f\left(-x\right) = -\left(x^5\right) - 4\left(x^3\right) + x

f\left(-x\right) = -\left(x^5 + 4x^3 - x\right)

Note that:

-f\left(x\right) = -\left(x^5 + 4x^3 - x\right)

Therefore:

f\left(x\right) = -f\left(x\right)

f is an odd function.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Transformations of functions and families of functions
  • Exercise : Identify a basic transformation from a graph
  • Exercise : Identify a basic transformation from an equation
  • Exercise : Identify even functions from equations
  • support@kartable.com
  • Legal notice

© Kartable 2026