01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Precalculus
  4. Exercise : Simplify rational functions

Simplify rational functions Precalculus

Simplify the expression of the following rational functions.

g\left(x\right)=\dfrac{x-3}{x^2-9}

For real numbers a,b we have the following algebraic identity:

a^2-b^2=\left(a-b\right)\left(a+b\right)

The denominator of the fraction equals:

x^2-9=\left(x-3\right)\left(x+3\right)

Therefore:

g\left(x\right) = \dfrac{\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} =\dfrac{1}{x+3}

g\left(x\right)=\dfrac{1}{x+3}

g\left(x\right)=\dfrac{x^2-1}{\left(x+1\right)^2}

For real numbers a,b we have the following algebraic identity:

a^2-b^2=\left(a-b\right)\left(a+b\right)

The numerator of the fraction equals:

x^2-1=\left(x-1\right)\left(x+1\right)

Therefore:

g\left(x\right) = \dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+1\right)} =\dfrac{x-1}{x+1}

g\left(x\right)=\dfrac{x-1}{x+1}

g\left(x\right)=\dfrac{x^2-4x+4}{x^2-4}

For real numbers a,b we have the following algebraic identities:

a^2-2ab+b^2 = \left(a-b\right)^2

a^2-b^2=\left(a-b\right)\left(a+b\right)

The numerator of the fraction equals:

x^2-4x+4=\left(x-2\right)^2

The denominator of the fraction equals:

x^2-4=\left(x-2\right)\left(x+2\right)

Hence we have:

g\left(x\right) = \dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}= \dfrac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}= \dfrac{\left(x-2\right)}{\left(x+2\right)}

g\left(x\right)=\dfrac{x-2}{x+2}

g\left(x\right)=\dfrac{x-1}{x^3-x}

For real numbers a,b we have the following algebraic identity:

a^2-b^2=\left(a-b\right)\left(a+b\right)

The denominator of the fraction equals:

x^3-x= x\left(x^2-1\right)=x\left(x-1\right)\left(x+1\right)

Therefore:

g\left(x\right) = \dfrac{x-1}{x\left(x-1\right)\left(x+1\right)}= \dfrac{1}{x\left(x+1\right)}

g\left(x\right) = \dfrac{1}{x\left(x+1\right)}

g\left(x\right)=\dfrac{x^4-x^3}{x^5-x^4}

The numerator of the fraction equals:

x^4-x^3=x^3\left(x-1\right)

The denominator of the fraction equals:

x^5-x^4 = x^4\left(x-1\right)

Therefore:

g\left(x\right)=\dfrac{x^4-x^3}{x^5-x^4}=\dfrac{x^3\left(x-1\right)}{x^4\left(x-1\right)}= \dfrac{1}{x}

g\left(x\right)=\ \dfrac{1}{x}

g\left(x\right)=\dfrac{x^5-x^3}{x^3\left(x-1\right)^2}

The numerator of the fraction equals:

x^5-x^3= x^3\left(x^2-1\right)

For real numbers a,b we have the following algebraic identity:

a^2-b^2=\left(a-b\right)\left(a+b\right)

The numerator of the fraction equals:

x^3\left(x^2-1\right) =x^3\left(x-1\right)\left(x+1\right)

Therefore:

g\left(x\right)=\dfrac{x^5-x^3}{x^3\left(x-1\right)^2}=\dfrac{x^3\left(x-1\right)\left(x+1\right)}{x^3\left(x-1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}

g\left(x\right)=\dfrac{x+1}{x-1}

g\left(x\right)=\dfrac{x^3-1}{x^2-1}

For real numbers a,b we have the following algebraic identities:

a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)

a^2-b^2=\left(a-b\right)\left(a+b\right)

The numerator of the fraction equals:

x^3-1=\left(x-1\right)\left(x^2+x+1\right)

The denominator of the fraction equals:

x^2-1=\left(x-1\right)\left(x+1\right)

Therefore:

g\left(x\right) = \dfrac{\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)}= \dfrac{x^2+x+1}{x+1}

g\left(x\right)=\dfrac{x^2+x+1}{x+1}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Rational functions
  • Exercise : Determine the domain of a rational function
  • Exercise : Solve a rational equation
  • support@kartable.com
  • Legal notice

© Kartable 2026