Are \overrightarrow{u}=\dbinom{2}{3} and \overrightarrow{v}=\binom{-6}{4} orthogonal ?
Two vectors are orthogonal if and only if their dot product is zero.
Here, we have:
\overrightarrow{u} \cdot \overrightarrow{v} = \dbinom{2}{3} \cdot \dbinom{-6}{4}=\left[2 \times \left(-6\right)\right]+\left(3 \times 4\right)=-12+12= 0
\overrightarrow{u} and \overrightarrow{v} are orthogonal.
Are \overrightarrow{u}=\dbinom{3}{5} and \overrightarrow{v}=\binom{-2}{4} orthogonal ?
Two vectors are orthogonal if and only if their dot product is zero.
Here, we have:
\overrightarrow{u} \cdot \overrightarrow{v} = \dbinom{3}{5} \cdot \dbinom{-2}{4}=\left[3 \times \left(-2\right)\right]+\left(5 \times 4\right)=-6+20= 14
\overrightarrow{u} and \overrightarrow{v} are not orthogonal.
Are \overrightarrow{u}=\dbinom{-1}{4} and \overrightarrow{v}=\binom{4}{1} orthogonal ?
Two vectors are orthogonal if and only if their dot product is zero.
Here, we have:
\overrightarrow{u} \cdot \overrightarrow{v} = \dbinom{-1}{4} \cdot \dbinom{4}{1}=\left[-1 \times \left(4\right)\right]+\left(4\times 1\right)=-4+4= 0
\overrightarrow{u} and \overrightarrow{v} are orthogonal.
Are \overrightarrow{u}=\dbinom{-1}{3} and \overrightarrow{v}=\binom{3}{7} orthogonal ?
Two vectors are orthogonal if and only if their dot product is zero.
Here, we have:
\overrightarrow{u} \cdot \overrightarrow{v} = \dbinom{-1}{3} \cdot \dbinom{3}{7}=\left[-1 \times 3\right]+\left(3 \times 7\right)=-3+21=18
\overrightarrow{u} and \overrightarrow{v} are not orthogonal.
Are \overrightarrow{u}=\dbinom{3}{-1} and \overrightarrow{v}=\binom{5}{15} orthogonal ?
Two vectors are orthogonal if and only if their dot product is zero.
Here, we have:
\overrightarrow{u} \cdot \overrightarrow{v} = \dbinom{3}{-1} \cdot \dbinom{5}{15}=\left[3 \times 5\right]+\left(-1 \times 15\right)=15-15= 0
\overrightarrow{u} and \overrightarrow{v} are orthogonal.
Are \overrightarrow{u}=\dbinom{2}{4} and \overrightarrow{v}=\binom{3}{-2} orthogonal ?
Two vectors are orthogonal if and only if their dot product is zero.
Here, we have:
\overrightarrow{u} \cdot \overrightarrow{v} = \dbinom{2}{4} \cdot \dbinom{3}{-2}=\left[2 \times3\right]+\left(4 \times -2\right)=6-8=-2
\overrightarrow{u} and \overrightarrow{v} are not orthogonal.
Are \overrightarrow{u}=\dbinom{2}{0} and \overrightarrow{v}=\binom{-5}{4} orthogonal ?
Two vectors are orthogonal if and only if their dot product is zero.
Here, we have:
\overrightarrow{u} \cdot \overrightarrow{v} = \dbinom{2}{0} \cdot \dbinom{-5}{4}=\left[2 \times \left(-5\right)\right]+\left(0 \times 4\right)=-10+0= -10
\overrightarrow{u} and \overrightarrow{v} are not orthogonal.