Find the complex roots of the following polynomials.
P\left(x\right)=x^2+6x+10
Consider the following quadratic equation:
ax^2+bx+c=0
The solutions are found using the quadratic formula:
x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}
Let's find the roots of:
P\left(x\right)=x^2+6x+10
We use:
- a=1
- b=6
- c=10
This gives:
x=\dfrac{-6\pm\sqrt{6^2-4\left(1\right)\left(10\right)}}{2\cdot1}
x=\dfrac{-6\pm\sqrt{-4}}{2}
x=\dfrac{-6\pm 2i}{2}
x=-3\pm i
The roots of P\left(x\right)=x^2+6x+10 are x=-3\pm i
P\left(x\right)=x^2+2x+4
Consider the following quadratic equation:
ax^2+bx+c=0
The solutions are found using the quadratic formula:
x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}
Let's find the roots of:
P\left(x\right)=x^2+2x+4
We use:
- a=1
- b=2
- c=4
This gives:
x=\dfrac{-2\pm\sqrt{2^2-4\left(1\right)\left(4\right)}}{2\cdot1}
x=\dfrac{-2\pm\sqrt{-12}}{2}
x=\dfrac{-2\pm 2i\sqrt{3}}{2}
x=-1\pm i\sqrt{3}
The roots of P\left(x\right)=x^2+2x+4 are x=-1\pm i\sqrt{3}.
P\left(x\right)=x^2+x+5
Consider the following quadratic equation:
ax^2+bx+c=0
The solutions are found using the quadratic formula:
x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}
Let's find the roots of:
P\left(x\right)=x^2+x+5
We use:
- a=1
- b=1
- c=5
This gives:
x=\dfrac{-1\pm\sqrt{1^2-4\left(1\right)\left(5\right)}}{2\cdot1}
x=\dfrac{-1\pm\sqrt{-19}}{2}
x=\dfrac{-1}{2}\pm \dfrac{i\sqrt{19}}{2}
The roots of P\left(x\right)=x^2+x+5 are x=\dfrac{-1}{2}\pm \dfrac{i\sqrt{19}}{2}.
P\left(x\right)=2x^2+5x+13
Consider the following quadratic equation:
ax^2+bx+c=0
The solutions are found using the quadratic formula:
x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}
Let's find the roots of:
P\left(x\right)=2x^2+5x+13
We use:
- a=2
- b=5
- c=13
This gives:
x=\dfrac{-5\pm\sqrt{5^2-4\left(2\right)\left(13\right)}}{2\cdot2}
x=\dfrac{-5\pm\sqrt{-79}}{4}
x=\dfrac{-5}{4} \pm \dfrac{i\sqrt{79}}{4}
The roots of P\left(x\right)=2x^2+5x+13 are x=\dfrac{-5}{4} \pm \dfrac{i\sqrt{79}}{4}.
P\left(x\right)=x^2-3x+5
Consider the following quadratic equation:
ax^2+bx+c=0
The solutions are found using the quadratic formula:
x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}
Let's find the roots of:
P\left(x\right)=x^2-3x+5
We use:
- a=1
- b=-3
- c=5
This gives:
x=\dfrac{-\left(-3\right)\pm\sqrt{\left(-3\right)^2-4\left(1\right)\left(5\right)}}{2\cdot1}
x=\dfrac{3\pm\sqrt{-11}}{2}
x=\dfrac{3\pm i \sqrt{11}}{2}
x=\dfrac{3}{2}\pm \dfrac{i\sqrt{11}}{2}
The roots of P\left(x\right)=x^2-3x+5 are x=\dfrac{3}{2}\pm \dfrac{i\sqrt{11}}{2}.
P\left(x\right)=3x^2-2x+5
Consider the following quadratic equation:
ax^2+bx+c=0
The solutions are found using the quadratic formula:
x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}
Let's find the roots of:
P\left(x\right)=3x^2-2x+5
We use:
- a=3
- b=-2
- c=5
This gives:
x=\dfrac{-\left(-2\right)\pm\sqrt{\left(-2\right)^2-4\left(3\right)\left(5\right)}}{2\cdot3}
x=\dfrac{2\pm\sqrt{-56}}{6}
x=\dfrac{2}{6}\pm \dfrac{2i\sqrt{14}}{6}
x=\dfrac{1}{3}\pm \dfrac{i\sqrt{14}}{3}
The roots of P\left(x\right)=3x^2-2x+5 are x=\dfrac{1}{3}\pm \dfrac{i\sqrt{14}}{3}.
P\left(x\right)=4x^2-4x+16
Consider the following quadratic equation:
ax^2+bx+c=0
The solutions are found using the quadratic formula:
x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}
Let's find the roots of:
P\left(x\right)=4x^2-4x+16
We use:
- a=4
- b=-4
- c=16
This gives:
x=\dfrac{-\left(-4\right)\pm\sqrt{\left(-4\right)^2-4\left(4\right)\left(16\right)}}{2\cdot4}
x=\dfrac{4\pm\sqrt{-15\left(16\right)}}{8}
x=\dfrac{4\pm 4i\sqrt{15}}{8}
x=\dfrac{1}{2}\pm\dfrac{ i\sqrt{15}}{2}
The roots of P\left(x\right)=4x^2-4x+16 are x=\dfrac{1}{2}\pm\dfrac{ i\sqrt{15}}{2}.