01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Trigonometry
  4. Exercise : Find the complex roots of a quadratic using the discriminant

Find the complex roots of a quadratic using the discriminant Trigonometry

Find the complex roots of the following polynomials.

P\left(x\right)=x^2+6x+10

Consider the following quadratic equation:

ax^2+bx+c=0

The solutions are found using the quadratic formula:

x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

Let's find the roots of:

P\left(x\right)=x^2+6x+10

We use:

  • a=1
  • b=6
  • c=10

This gives:

x=\dfrac{-6\pm\sqrt{6^2-4\left(1\right)\left(10\right)}}{2\cdot1}

x=\dfrac{-6\pm\sqrt{-4}}{2}

x=\dfrac{-6\pm 2i}{2}

x=-3\pm i

The roots of P\left(x\right)=x^2+6x+10 are x=-3\pm i

P\left(x\right)=x^2+2x+4

Consider the following quadratic equation:

ax^2+bx+c=0

The solutions are found using the quadratic formula:

x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

Let's find the roots of:

P\left(x\right)=x^2+2x+4

We use:

  • a=1
  • b=2
  • c=4

This gives:

x=\dfrac{-2\pm\sqrt{2^2-4\left(1\right)\left(4\right)}}{2\cdot1}

x=\dfrac{-2\pm\sqrt{-12}}{2}

x=\dfrac{-2\pm 2i\sqrt{3}}{2}

x=-1\pm i\sqrt{3}

The roots of P\left(x\right)=x^2+2x+4 are x=-1\pm i\sqrt{3}.

P\left(x\right)=x^2+x+5

Consider the following quadratic equation:

ax^2+bx+c=0

The solutions are found using the quadratic formula:

x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

Let's find the roots of:

P\left(x\right)=x^2+x+5

We use:

  • a=1
  • b=1
  • c=5

This gives:

x=\dfrac{-1\pm\sqrt{1^2-4\left(1\right)\left(5\right)}}{2\cdot1}

x=\dfrac{-1\pm\sqrt{-19}}{2}

x=\dfrac{-1}{2}\pm \dfrac{i\sqrt{19}}{2}

The roots of P\left(x\right)=x^2+x+5 are x=\dfrac{-1}{2}\pm \dfrac{i\sqrt{19}}{2}.

P\left(x\right)=2x^2+5x+13

Consider the following quadratic equation:

ax^2+bx+c=0

The solutions are found using the quadratic formula:

x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

Let's find the roots of:

P\left(x\right)=2x^2+5x+13

We use:

  • a=2
  • b=5
  • c=13

This gives:

x=\dfrac{-5\pm\sqrt{5^2-4\left(2\right)\left(13\right)}}{2\cdot2}

x=\dfrac{-5\pm\sqrt{-79}}{4}

x=\dfrac{-5}{4} \pm \dfrac{i\sqrt{79}}{4}

The roots of P\left(x\right)=2x^2+5x+13 are x=\dfrac{-5}{4} \pm \dfrac{i\sqrt{79}}{4}.

P\left(x\right)=x^2-3x+5

Consider the following quadratic equation:

ax^2+bx+c=0

The solutions are found using the quadratic formula:

x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

Let's find the roots of:

P\left(x\right)=x^2-3x+5

We use:

  • a=1
  • b=-3
  • c=5

This gives:

x=\dfrac{-\left(-3\right)\pm\sqrt{\left(-3\right)^2-4\left(1\right)\left(5\right)}}{2\cdot1}

x=\dfrac{3\pm\sqrt{-11}}{2}

x=\dfrac{3\pm i \sqrt{11}}{2}

x=\dfrac{3}{2}\pm \dfrac{i\sqrt{11}}{2}

The roots of P\left(x\right)=x^2-3x+5 are x=\dfrac{3}{2}\pm \dfrac{i\sqrt{11}}{2}.

P\left(x\right)=3x^2-2x+5

Consider the following quadratic equation:

ax^2+bx+c=0

The solutions are found using the quadratic formula:

x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

Let's find the roots of:

P\left(x\right)=3x^2-2x+5

We use:

  • a=3
  • b=-2
  • c=5

This gives:

x=\dfrac{-\left(-2\right)\pm\sqrt{\left(-2\right)^2-4\left(3\right)\left(5\right)}}{2\cdot3}

x=\dfrac{2\pm\sqrt{-56}}{6}

x=\dfrac{2}{6}\pm \dfrac{2i\sqrt{14}}{6}

x=\dfrac{1}{3}\pm \dfrac{i\sqrt{14}}{3}

The roots of P\left(x\right)=3x^2-2x+5 are x=\dfrac{1}{3}\pm \dfrac{i\sqrt{14}}{3}.

P\left(x\right)=4x^2-4x+16

Consider the following quadratic equation:

ax^2+bx+c=0

The solutions are found using the quadratic formula:

x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

Let's find the roots of:

P\left(x\right)=4x^2-4x+16

We use:

  • a=4
  • b=-4
  • c=16

This gives:

x=\dfrac{-\left(-4\right)\pm\sqrt{\left(-4\right)^2-4\left(4\right)\left(16\right)}}{2\cdot4}

x=\dfrac{4\pm\sqrt{-15\left(16\right)}}{8}

x=\dfrac{4\pm 4i\sqrt{15}}{8}

x=\dfrac{1}{2}\pm\dfrac{ i\sqrt{15}}{2}

The roots of P\left(x\right)=4x^2-4x+16 are x=\dfrac{1}{2}\pm\dfrac{ i\sqrt{15}}{2}.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Complex numbers
  • Exercise : Find the magnitude (or absolute value) of a complex number
  • Exercise : Multiply complex numbers
  • Exercise : Divide complex numbers
  • Exercise : Match points of the complex plan and complex numbers
  • Exercise : Convert between any forms of complex numbers
  • support@kartable.com
  • Legal notice

© Kartable 2026