01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra I
  4. Exercise : Convert a system of equations into a triangular system

Convert a system of equations into a triangular system Algebra I

Find a triangular system that is equivalent to the following systems, using elementary row operations.

\begin{cases} x+3y-z=2 \cr \cr 3x+2y+3z=4 \cr \cr x+y-z=2 \end{cases}

The augmented matrix of the equation is the following:

\begin{pmatrix} 1 & 3 &-1& |&2 \cr\cr 3 &2 &3 & |& 4 \cr\cr 1 & 1 & -1 & |& 2 \end{pmatrix}

To find a triangular system, the entries below the main diagonal must change to zero. We have:

\begin{pmatrix} 1 & 3 &-1& |&2 \cr\cr 3 &2 &3 & |& 4 \cr\cr 1 & 1 & -1 & |& 2 \end{pmatrix}

\ce{->[R_2:R_2-3R_1][R3:R_3-R_1]}\begin{pmatrix} 1 & 3 &-1& |&2 \cr\cr 0 &-7 &6 & |& -2 \cr\cr 0 & -2 & 0 & |& 0 \end{pmatrix}

\ce{->[R_3: R_3-2/7R_2]} \begin{pmatrix} 1 & 3 &-1& |&2 \cr\cr 0 &-7 &6 & |& -2 \cr\cr 0 & 0 & -12/7 & |& 4/7 \end{pmatrix}

Therefore, the system is equivalent to the following triangular system:

\begin{cases} x+3y+z=2 \cr \cr -7y+6z=2 \cr \cr -12/7z=4/7 \end{cases}

\begin{cases} 2x-3y=2 \cr \cr x+2y=5 \end{cases}

The augmented matrix of the equation is the following:

\begin{pmatrix} 2 & -3& |&2 \cr\cr 1 & 2 & |& 5 \end{pmatrix}

To find a triangular system, the entry below the main diagonal must change to zero. We have:

\begin{pmatrix} 2 & -3& |&2 \cr\cr 1 & 2 & |& 5 \end{pmatrix}

\ce{->[R_2:R_2-1/2R_1]}\begin{pmatrix} 2 & -3& |&2 \cr\cr 0 &\dfrac{7}{2} & |& 4 \end{pmatrix}

Therefore, the system is equivalent to the following triangular system:

\begin{cases} 2x-3y=2 \cr \cr \dfrac{7}{2}y=4 \end{cases}

\begin{cases} x-4y=9 \cr \cr 3x+8y=7 \end{cases}

The augmented matrix of the equation is the following:

\begin{pmatrix} 1 & -4& |&9 \cr\cr 3 & 8 & |& 7 \end{pmatrix}

To find a triangular system, the entry below the main diagonal must change to zero. We have:

\ce{->[R_2:R_2-3R_1]}\begin{pmatrix} 1 & -4& |&9 \cr\cr 0 & 20 & |& -20 \end{pmatrix}

Therefore, the system is equivalent to the following triangular system:

\begin{cases} x-4y=9 \cr \cr 20y=-20 \end{cases}

\begin{cases} 2x+5y=3 \cr \cr 3x+4y=-1 \end{cases}

The augmented matrix of the equation is the following:

\begin{pmatrix} 2 & 5& |&3 \cr\cr 3 & 4 & |& -1 \end{pmatrix}

To find a triangular system, the entry below the main diagonal must change to zero. We have:

\ce{->[R_2:R_2-3/2R_1]}\begin{pmatrix} 2 & 5& |&3 \cr\cr 0 & -\dfrac{7}{2} & |& -\dfrac{11}{2} \end{pmatrix}

Therefore, the system is equivalent to the following triangular system:

\begin{cases} 2x+5y=3 \cr \cr -\dfrac{7}{2}y=-\dfrac{11}{2} \end{cases}

\begin{cases} x+y-z=2 \cr \cr 2x+2y+3z=7 \cr \cr 3x-y-2z=0 \end{cases}

The augmented matrix of the equation is the following:

\begin{pmatrix} 1 & 1 &-1& |&2 \cr\cr 2 &2 &3 & |& 7 \cr\cr 3 & -1 & -2 & |& 0 \end{pmatrix}

To find a triangular system, the entries below the main diagonal must change to zero. We have:

\ce{->[R_2:R_2-2R_1][R3:R_3-3R_1]} \begin{pmatrix} 1 & 1 &-1& |&2 \cr\cr 0 &0 &5 & |& 3 \cr\cr 0 & -4 & 1 & |& -6 \end{pmatrix}

\ce{->[R_3: R_3-2/7R_2]} \begin{pmatrix} 1 & 1 &-1& |&2 \cr\cr 0 &0 &5 & |& 3 \cr\cr 0 & -4 & 1 & |& -6 \end{pmatrix}

\ce{->[R_3\ce{ \lt = \gt } R_2]} \begin{pmatrix} 1 & 1 &-1& |&2 \cr\cr 0 &-4 &1 & |& -6 \cr\cr 0 & 0 & 5 & |& 3 \end{pmatrix}

Therefore, the system is equivalent to the following triangular system:

\begin{cases} x+y-z=2 \cr \cr -4y+z=-6 \cr \cr 5z=3 \end{cases}

\begin{cases} x-z=2 \cr \cr x+y=4 \cr \cr y-z=-2 \end{cases}

The augmented matrix of the equation is the following:

\begin{pmatrix} 1 & 0 &-1& |&2 \cr\cr 1 &1 &0 & |& 4 \cr\cr 0& 1 & -1 & |& -2 \end{pmatrix}

To find a triangular system, the entries below the main diagonal must change to zero. We have:

\begin{pmatrix} 1 & 0 &-1& |&2 \cr\cr 1 &1 &0 & |& 4 \cr\cr 0& 1 & -1 & |& -2 \end{pmatrix}

\ce{->[R_2: R_2-R_1]} \begin{pmatrix} 1 & 0 &-1& |&2 \cr\cr 0 &1 &1 & |& 2 \cr\cr 0& 1 & -1 & |& -2 \end{pmatrix}

\ce{->[R_3: R_3-R_2]} \begin{pmatrix} 1 & 0 &-1& |&2 \cr\cr 0 &1 &1 & |& 2 \cr\cr 0& 0 & -2 & |& -4 \end{pmatrix}

Therefore, the system is equivalent to the following triangular system:

\begin{cases} x-z=2 \cr \cr y+z=2 \cr \cr -2z=-4 \end{cases}

\begin{cases} x+y+z=5 \cr \cr 2x+2y+3z=10 \cr \cr 4x-5y+z=2 \end{cases}

The augmented matrix of the equation is the following:

\begin{pmatrix} 1 & 1 &1& |&5 \cr\cr 2 &2 &3 & |& 10 \cr\cr 4 & -5 & 1 & |& 2 \end{pmatrix}

To find a triangular system, the entries below the main diagonal must change to zero. We have:

\begin{pmatrix} 1 & 1 &1& |&5 \cr\cr 2 &2 &3 & |& 10 \cr\cr 4 & -5 & 1 & |& 2 \end{pmatrix}

\ce{->[R_2:R_2-2R_1][R3:R_3-4R_1]} \begin{pmatrix} 1 & 1 &1& |&5 \cr\cr 0 &0 &1 & |& 0 \cr\cr 0 & -9 & -3 & |& -18 \end{pmatrix}

\ce{->[R_2\ce{ \lt = \gt } R_3]} \begin{pmatrix} 1 & 1 &1& |&5 \cr\cr 0 & -9 & -3 & |& -18 \cr\cr 0 &0 &1 & |& 0 \end{pmatrix}

Therefore, the system is equivalent to the following triangular system:

\begin{cases} x+y+z=5 \cr \cr -9y-3z=-18 \cr \cr z=0 \end{cases}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : System of linear equations
  • Exercise : Convert a word problem into a system of linear equations
  • Exercise : Solve a system of equation using substitution
  • Exercise : Solve a system of equation using elimination
  • Exercise : Solve a system of equation using the Gaussian elimination
  • support@kartable.com
  • Legal notice

© Kartable 2026