Find the solutions of the following systems using Gaussian elimination.
\begin{cases} 2x+3y=2 \cr \cr 3x+2y=4 \end{cases}
The augmented matrix of this system is:
\begin{pmatrix} 2 & 3 & | & 2 \cr\cr 3 & 2 & | &4 \end{pmatrix}
Use the row operation to find the triangular form:
\begin{pmatrix} 2 & 3 & | & 2 \cr\cr 3 & 2 & | &4 \end{pmatrix} \ce{->[R_2: R_2-3/2R_1]}\begin{pmatrix} 2 & 3 & | & 2 \cr\cr 0 & -5/2 & | &1 \end{pmatrix}
The system is equivalent to:
\begin{cases} 2x+3y=2 \cr \cr -5/2y=1 \end{cases}
Solve the second equation:
-\dfrac{5}{2}y=1
y=-\dfrac{2}{5}
Now solve the first equation:
2x+3y=2 \Rightarrow 2x+3 \times\left(\dfrac{-2}{5}\right)= 2 \Rightarrow 2x-\dfrac{6}{5}=2 \Rightarrow 2x=\dfrac{16}{5} \Rightarrow x=\dfrac{8}{5}
The solution is \begin{cases} x= \dfrac{8}{5}\cr \cr y=-\dfrac{2}{5} \end{cases}.
\begin{cases} x-5y=-5 \cr \cr 3x+2y=19 \end{cases}
The augmented matrix of this system is:
\begin{pmatrix} 1 & -5 & | & -5 \cr\cr 3 & 2 & | & 19 \end{pmatrix}
Use the row operation to find the triangular form:
\begin{pmatrix} 1 & -5 & | & -5 \cr\cr 3 & 2 & | & 19 \end{pmatrix} \ce{->[R_2: R_2-3R_1]}\begin{pmatrix} 1 & -5 & | & -5 \cr\cr 0 & 17 & | & 34 \end{pmatrix}
The system is equivalent to:
\begin{cases} x-5y=-5 \cr \cr 17y=34 \end{cases}
Solve the second equation:
17y=34
y=2
Now solve the first equation:
x-5y=-5 \Rightarrow x-5 \times\left(2\right)= -5 \Rightarrow x-10=-5 \Rightarrow x=5
The solution is \begin{cases} x=2\cr \cr y=5\end{cases}.
\begin{cases} x-3y=5 \cr \cr -2x+6y=4 \end{cases}
The augmented matrix of this system is:
\begin{pmatrix} 1 & -3 & | & 5 \cr\cr -2& 6 & | &4 \end{pmatrix}
Use the row operation to find the triangular form:
\begin{pmatrix} 1 & -3 & | & 5 \cr\cr -2& 6 & | &4 \end{pmatrix}\ce{->[R_2: R_2+2R_1]}\begin{pmatrix} 1 & -3 & | & 5 \cr\cr 0& 0 & | &14 \end{pmatrix}
The system is equivalent to:
\begin{cases} x-3y=5 \cr \cr 0=14 \end{cases}
The system has no solution.
\begin{cases} 4x-6y=10 \cr \cr 2x-3y=5 \end{cases}
The augmented matrix of this system is:
\begin{pmatrix} 4 & -6 & | & 10 \cr\cr 2 & -3 & | &5 \end{pmatrix}
Use the row operation to find the triangular form:
\begin{pmatrix} 4 & -6 & | & 10 \cr\cr 2 & -3 & | &5 \end{pmatrix}\ce{->[R_2: R_2-1/2R_1]}\begin{pmatrix} 4 & -6 & | & 10 \cr\cr 0 & 0 & | &0 \end{pmatrix}
The system has infinitely many solutions. To find the general solution, assume that y=t.
Solve the first equation:
4x-6y=10 \Rightarrow 4x-6t=10 \Rightarrow x= \dfrac{10+6t}{4}
The solution is \begin{cases} x= \dfrac{10+6t}{4} \cr \cr y=t \end{cases}.
\begin{cases} x+y+z=3 \cr \cr 2x-y+5z=6 \cr \cr 4x+3y-8z=-1 \end{cases}
The augmented matrix of the equation is the following:
\begin{pmatrix} 1 & 1 &1& |&3 \cr\cr 2 &-1 &5 & |& 6 \cr\cr 4 & 3 & -8 & |& -1 \end{pmatrix}
To find a triangular system, the entries below the main diagonal must change to zero. We have:
\begin{pmatrix} 1 & 1 &1& |&3 \cr\cr 2 &-1 &5 & |& 6 \cr\cr 4 & 3 & -8 & |& -1 \end{pmatrix}
\ce{->[R_2:R_2-2R_1][R3:R_3-4R_1]}\begin{pmatrix} 1 & 1 &1& |&3 \cr\cr 0 &-3 &3 & |& 0 \cr\cr 0 & -1 & -12 & |& -13 \end{pmatrix}
\ce{->[R_3: R_3-1/3R_2]} \begin{pmatrix} 1 & 1 &1& |&3 \cr\cr 0 &-3 &3 & |& 0 \cr\cr 0 & 0& -13 & |& -13 \end{pmatrix}
Therefore, the system is equivalent to the following triangular system:
\begin{cases} x+y+z=3 \cr \cr -3y+3z=0 \cr \cr -13z=-13 \end{cases}
Solve the third equation:
-13z = -13
z=1
Now solve the second equation:
-3y+3z = 0 \Rightarrow -3y+ 3\left(1\right)= 0 \Rightarrow -3y=-3 \Rightarrow y=1
Finally, solve the first equation:
x+y+z=3 \Rightarrow x+ \left(1\right) + \left(1\right) = 3 \Rightarrow x+2 = 3 \Rightarrow x=1
The solution is \begin{cases} x=1 \cr \cr y=1 \cr \cr z=1 \end{cases}.
\begin{cases} x+6y-2z=4 \cr \cr 4x+2y-z=3 \cr \cr 2x+4y+z=0 \end{cases}
The augmented matrix of the equation is the following:
\begin{pmatrix} 1 & 6 &-2& |&4 \cr\cr 4 &2 &-1 & |& 3 \cr\cr 2 & 4 & 1 & |& 0 \end{pmatrix}
To find a triangular system, the entries below the main diagonal must change to zero. We have:
\begin{pmatrix} 1 & 6 &-2& |&4 \cr\cr 4 &2 &-1 & |& 3 \cr\cr 2 & 4 & 1 & |& 0 \end{pmatrix}
\ce{->[R_2:R_2-2R_1][R3:R_3-4R_1]}\begin{pmatrix} 1 & 6 &-2& |&4 \cr\cr 0 &-22 &7 & |&-13 \cr\cr 0 & -8 & 5 & |& -8 \end{pmatrix}
\ce{->[R_3: R_3-4/11R_2]} \begin{pmatrix} 1 & 6 &-2& |&4 \cr\cr 0 &-22 &7 & |&-13 \cr\cr 0 & 0 & 5-\left(\dfrac{4}{11}\times7\right) & |& -8-\left(\dfrac{4}{11}\times-13\right) \end{pmatrix}
=\begin{pmatrix} 1 & 6 &-2& |&4 \cr\cr 0 &-22 &7 & |&-13 \cr\cr 0 & 0 & \dfrac{27}{11} & |& -\dfrac{36}{11} \end{pmatrix}
Therefore, the system is equivalent to the following triangular system:
\begin{cases} x+6y-2z=4 \cr \cr -22y+7z=-13 \cr \cr \dfrac{27}{11}z=-\dfrac{36}{11} \end{cases}
Solve the third equation:
\dfrac{27}{11}z=-\dfrac{36}{11}
z=-\dfrac{36}{27} =-\dfrac{4}{3}
Now solve the second equation:
-22y - 7z = -13 \Rightarrow -22y +7\left(-\dfrac{4}{3}\right)=-13 \Rightarrow -22y = -13+\dfrac{28}{3} = -\dfrac{11}{3}\\
y=\dfrac{1}{6}
Finally, solve the first equation:
x+6\left(\dfrac{1}{6}\right) -2\left(-\dfrac{4}{3}\right) = 4 \Rightarrow x=4-1-\dfrac{8}{3} = \dfrac{1}{3}
The solution is \begin{cases} x=\dfrac{1}{3} \cr \cr y=\dfrac{1}{6} \cr \cr z=-\dfrac{4}{3} \end{cases}.
\begin{cases} 2x+2y-z=3 \cr \cr 4x+4y-2z=5 \cr \cr x+2y-z=1 \end{cases}
The augmented matrix of the equation is the following:
\begin{cases} 2x+2y-z=3 \cr \cr 4x+4y-2z=5 \cr \cr x+2y-z=1 \end{cases}
\begin{pmatrix} 2 & 2 &-1& |&3 \cr\cr 4 &4 &-2 & |& 5 \cr\cr 1 & 2 & -1 & |& 1 \end{pmatrix}
To find a triangular system, the entries below the main diagonal must change to zero. We have:
\begin{pmatrix} 2 & 2 &-1& |&3 \cr\cr 4 &4 &-2 & |& 5 \cr\cr 1 & 2 & -1 & |& 1 \end{pmatrix}
\ce{->[R_2:R_2-2R_1][R3:R_3-1/2R_1]}\begin{pmatrix} 2 & 2 &-1& |&3 \cr\cr 0&0 &0 & |& -1 \cr\cr 0 & 1 & -\dfrac{1}{2} & |& -\dfrac{1}{2} \end{pmatrix}
\ce{->[R_3: R_2]} \begin{pmatrix} 2 & 2 &-1& |&3 \cr\cr 0&0 &0 & |& -1 \cr\cr 0 & 1 & -\dfrac{1}{2} & |& -\dfrac{1}{2} \end{pmatrix}
\ce{->[R_2 \ce{ \lt = \gt } R_3]}\begin{pmatrix} 2 & 2 &-1& |&3\cr\cr 0 & 1 & -\dfrac{1}{2} & |& -\dfrac{1}{2} \cr\cr 0&0 &0 & |& -1 \end{pmatrix}
The system is equivalent to:
\begin{cases} 2x+2y-z=3 \cr \cr y -\dfrac{1}{2}z=-\dfrac{1}{2} \cr \cr 0=-1 \end{cases}
The system has no solution.