01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra I
  4. Exercise : Solve a system of equation using the Gaussian elimination

Solve a system of equation using the Gaussian elimination Algebra I

Find the solutions of the following systems using Gaussian elimination.

\begin{cases} 2x+3y=2 \cr \cr 3x+2y=4 \end{cases}

The augmented matrix of this system is:

\begin{pmatrix} 2 & 3 & | & 2 \cr\cr 3 & 2 & | &4 \end{pmatrix}

Use the row operation to find the triangular form:

\begin{pmatrix} 2 & 3 & | & 2 \cr\cr 3 & 2 & | &4 \end{pmatrix} \ce{->[R_2: R_2-3/2R_1]}\begin{pmatrix} 2 & 3 & | & 2 \cr\cr 0 & -5/2 & | &1 \end{pmatrix}

The system is equivalent to:

\begin{cases} 2x+3y=2 \cr \cr -5/2y=1 \end{cases}

Solve the second equation:

-\dfrac{5}{2}y=1

y=-\dfrac{2}{5}

Now solve the first equation:

2x+3y=2 \Rightarrow 2x+3 \times\left(\dfrac{-2}{5}\right)= 2 \Rightarrow 2x-\dfrac{6}{5}=2 \Rightarrow 2x=\dfrac{16}{5} \Rightarrow x=\dfrac{8}{5}

The solution is \begin{cases} x= \dfrac{8}{5}\cr \cr y=-\dfrac{2}{5} \end{cases}.

\begin{cases} x-5y=-5 \cr \cr 3x+2y=19 \end{cases}

The augmented matrix of this system is:

\begin{pmatrix} 1 & -5 & | & -5 \cr\cr 3 & 2 & | & 19 \end{pmatrix}

Use the row operation to find the triangular form:

\begin{pmatrix} 1 & -5 & | & -5 \cr\cr 3 & 2 & | & 19 \end{pmatrix} \ce{->[R_2: R_2-3R_1]}\begin{pmatrix} 1 & -5 & | & -5 \cr\cr 0 & 17 & | & 34 \end{pmatrix}

The system is equivalent to:

\begin{cases} x-5y=-5 \cr \cr 17y=34 \end{cases}

Solve the second equation:

17y=34

y=2

Now solve the first equation:

x-5y=-5 \Rightarrow x-5 \times\left(2\right)= -5 \Rightarrow x-10=-5 \Rightarrow x=5

The solution is \begin{cases} x=2\cr \cr y=5\end{cases}.

\begin{cases} x-3y=5 \cr \cr -2x+6y=4 \end{cases}

The augmented matrix of this system is:

\begin{pmatrix} 1 & -3 & | & 5 \cr\cr -2& 6 & | &4 \end{pmatrix}

Use the row operation to find the triangular form:

\begin{pmatrix} 1 & -3 & | & 5 \cr\cr -2& 6 & | &4 \end{pmatrix}\ce{->[R_2: R_2+2R_1]}\begin{pmatrix} 1 & -3 & | & 5 \cr\cr 0& 0 & | &14 \end{pmatrix}

The system is equivalent to:

\begin{cases} x-3y=5 \cr \cr 0=14 \end{cases}

The system has no solution.

\begin{cases} 4x-6y=10 \cr \cr 2x-3y=5 \end{cases}

The augmented matrix of this system is:

\begin{pmatrix} 4 & -6 & | & 10 \cr\cr 2 & -3 & | &5 \end{pmatrix}

Use the row operation to find the triangular form:

\begin{pmatrix} 4 & -6 & | & 10 \cr\cr 2 & -3 & | &5 \end{pmatrix}\ce{->[R_2: R_2-1/2R_1]}\begin{pmatrix} 4 & -6 & | & 10 \cr\cr 0 & 0 & | &0 \end{pmatrix}

The system has infinitely many solutions. To find the general solution, assume that y=t.

Solve the first equation:

4x-6y=10 \Rightarrow 4x-6t=10 \Rightarrow x= \dfrac{10+6t}{4}

The solution is \begin{cases} x= \dfrac{10+6t}{4} \cr \cr y=t \end{cases}.

\begin{cases} x+y+z=3 \cr \cr 2x-y+5z=6 \cr \cr 4x+3y-8z=-1 \end{cases}

The augmented matrix of the equation is the following:

\begin{pmatrix} 1 & 1 &1& |&3 \cr\cr 2 &-1 &5 & |& 6 \cr\cr 4 & 3 & -8 & |& -1 \end{pmatrix}

To find a triangular system, the entries below the main diagonal must change to zero. We have:

\begin{pmatrix} 1 & 1 &1& |&3 \cr\cr 2 &-1 &5 & |& 6 \cr\cr 4 & 3 & -8 & |& -1 \end{pmatrix}

\ce{->[R_2:R_2-2R_1][R3:R_3-4R_1]}\begin{pmatrix} 1 & 1 &1& |&3 \cr\cr 0 &-3 &3 & |& 0 \cr\cr 0 & -1 & -12 & |& -13 \end{pmatrix}

\ce{->[R_3: R_3-1/3R_2]} \begin{pmatrix} 1 & 1 &1& |&3 \cr\cr 0 &-3 &3 & |& 0 \cr\cr 0 & 0& -13 & |& -13 \end{pmatrix}

Therefore, the system is equivalent to the following triangular system:

\begin{cases} x+y+z=3 \cr \cr -3y+3z=0 \cr \cr -13z=-13 \end{cases}

Solve the third equation:

-13z = -13

z=1

Now solve the second equation:

-3y+3z = 0 \Rightarrow -3y+ 3\left(1\right)= 0 \Rightarrow -3y=-3 \Rightarrow y=1

Finally, solve the first equation:

x+y+z=3 \Rightarrow x+ \left(1\right) + \left(1\right) = 3 \Rightarrow x+2 = 3 \Rightarrow x=1

The solution is \begin{cases} x=1 \cr \cr y=1 \cr \cr z=1 \end{cases}.

\begin{cases} x+6y-2z=4 \cr \cr 4x+2y-z=3 \cr \cr 2x+4y+z=0 \end{cases}

The augmented matrix of the equation is the following:

\begin{pmatrix} 1 & 6 &-2& |&4 \cr\cr 4 &2 &-1 & |& 3 \cr\cr 2 & 4 & 1 & |& 0 \end{pmatrix}

To find a triangular system, the entries below the main diagonal must change to zero. We have:

\begin{pmatrix} 1 & 6 &-2& |&4 \cr\cr 4 &2 &-1 & |& 3 \cr\cr 2 & 4 & 1 & |& 0 \end{pmatrix}

\ce{->[R_2:R_2-2R_1][R3:R_3-4R_1]}\begin{pmatrix} 1 & 6 &-2& |&4 \cr\cr 0 &-22 &7 & |&-13 \cr\cr 0 & -8 & 5 & |& -8 \end{pmatrix}

\ce{->[R_3: R_3-4/11R_2]} \begin{pmatrix} 1 & 6 &-2& |&4 \cr\cr 0 &-22 &7 & |&-13 \cr\cr 0 & 0 & 5-\left(\dfrac{4}{11}\times7\right) & |& -8-\left(\dfrac{4}{11}\times-13\right) \end{pmatrix}

=\begin{pmatrix} 1 & 6 &-2& |&4 \cr\cr 0 &-22 &7 & |&-13 \cr\cr 0 & 0 & \dfrac{27}{11} & |& -\dfrac{36}{11} \end{pmatrix}

Therefore, the system is equivalent to the following triangular system:

\begin{cases} x+6y-2z=4 \cr \cr -22y+7z=-13 \cr \cr \dfrac{27}{11}z=-\dfrac{36}{11} \end{cases}

Solve the third equation:

\dfrac{27}{11}z=-\dfrac{36}{11}

z=-\dfrac{36}{27} =-\dfrac{4}{3}

Now solve the second equation:

-22y - 7z = -13 \Rightarrow -22y +7\left(-\dfrac{4}{3}\right)=-13 \Rightarrow -22y = -13+\dfrac{28}{3} = -\dfrac{11}{3}\\

y=\dfrac{1}{6}

Finally, solve the first equation:

x+6\left(\dfrac{1}{6}\right) -2\left(-\dfrac{4}{3}\right) = 4 \Rightarrow x=4-1-\dfrac{8}{3} = \dfrac{1}{3}

The solution is \begin{cases} x=\dfrac{1}{3} \cr \cr y=\dfrac{1}{6} \cr \cr z=-\dfrac{4}{3} \end{cases}.

\begin{cases} 2x+2y-z=3 \cr \cr 4x+4y-2z=5 \cr \cr x+2y-z=1 \end{cases}

The augmented matrix of the equation is the following:

\begin{cases} 2x+2y-z=3 \cr \cr 4x+4y-2z=5 \cr \cr x+2y-z=1 \end{cases}

\begin{pmatrix} 2 & 2 &-1& |&3 \cr\cr 4 &4 &-2 & |& 5 \cr\cr 1 & 2 & -1 & |& 1 \end{pmatrix}

To find a triangular system, the entries below the main diagonal must change to zero. We have:

\begin{pmatrix} 2 & 2 &-1& |&3 \cr\cr 4 &4 &-2 & |& 5 \cr\cr 1 & 2 & -1 & |& 1 \end{pmatrix}

\ce{->[R_2:R_2-2R_1][R3:R_3-1/2R_1]}\begin{pmatrix} 2 & 2 &-1& |&3 \cr\cr 0&0 &0 & |& -1 \cr\cr 0 & 1 & -\dfrac{1}{2} & |& -\dfrac{1}{2} \end{pmatrix}

\ce{->[R_3: R_2]} \begin{pmatrix} 2 & 2 &-1& |&3 \cr\cr 0&0 &0 & |& -1 \cr\cr 0 & 1 & -\dfrac{1}{2} & |& -\dfrac{1}{2} \end{pmatrix}

\ce{->[R_2 \ce{ \lt = \gt } R_3]}\begin{pmatrix} 2 & 2 &-1& |&3\cr\cr 0 & 1 & -\dfrac{1}{2} & |& -\dfrac{1}{2} \cr\cr 0&0 &0 & |& -1 \end{pmatrix}

The system is equivalent to:

\begin{cases} 2x+2y-z=3 \cr \cr y -\dfrac{1}{2}z=-\dfrac{1}{2} \cr \cr 0=-1 \end{cases}

The system has no solution.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : System of linear equations
  • Exercise : Convert a word problem into a system of linear equations
  • Exercise : Solve a system of equation using substitution
  • Exercise : Solve a system of equation using elimination
  • Exercise : Convert a system of equations into a triangular system
  • support@kartable.com
  • Legal notice

© Kartable 2026