01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra II
  4. Course : Series

Series Algebra II

Summary

IPartial Sums of SequencesAThe sigma notationBDefinitions and VocabularyCQuick ShortcutsIIIntroduction to convergent and divergent seriesADefinition and vocabularyBConvergence and divergence of infinite geometric series
I

Partial Sums of Sequences

A

The sigma notation

Sigma notation

The sigma notation is a notation which means "sum up". Given a sequence \left\{ a_{1}, a_{2}, ...,a_{n}\right\}, the sum of the terms of this sequence is :

\sum_{k=1}^{n}a_{k}=a_{1}+a_{2}+a_{3}+\dots+a_{n}

\sum_{k=1}^{4}\left(3k\right)=\left(3\cdot1\right)+\left(3\cdot2\right)+\left(3\cdot3\right)+\left(3\cdot4\right)=30

\sum_{k=7}^{9}\left(k^{2}+1\right)=\left(7^{2}+1\right)+\left(8^{2}+1\right)+\left(9^{2}+1\right)=197

\sum_{p=0}^{6}\left(\sqrt{p}\right)=\sqrt{0}+\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}\approx10.83

\sum_{k=1}^{5}\left(7\right)=\left(7\right)+\left(7\right)+\left(7\right)+\left(7\right)+\left(7\right)=35

Sigma notation is also called summation notation.

B

Definitions and Vocabulary

If \left\{ a_{1}, a_{2}, a_{3},...,a_{n} \right\} and \left\{ b_{1}, b_{2}, b_{3},...,b_{n} \right\} are two sequences, then:

\sum_{k=1}^{n}\left( a_{k}+b_{k} \right)=\sum_{k=1}^{n}a_{k}+\sum_{k=1}^{n}b_{k}

If \left\{ a_{1}, a_{2}, a_{3},...,a_{n} \right\} and \left\{ b_{1}, b_{2}, b_{3},...,b_{n} \right\} are two sequences, then:

\sum_{k=1}^{n}\left( a_{k}-b_{k} \right)=\sum_{k=1}^{n}a_{k}-\sum_{k=1}^{n}b_{k}

If \left\{ a_{1}, a_{2}, a_{3},...,a_{n} \right\} is a sequence and if \alpha is a real number, then:

\sum_{k=1}^{n}\left(\alpha\cdot a_{k}\right)=\alpha\cdot\sum_{k=1}^{n}a_{k}

\sum_{k=1}^{n}\left( 5k^{2}+3k-7 \right)=\sum_{k=1}^{n}\left( 5k^{2} \right)+\sum_{k=1}^{n}\left( 3k \right)-\sum_{k=1}^{n}\left(7 \right)=5\sum_{k=1}^{n}\left( k^{2} \right)+3\sum_{k=1}^{n}\left( k \right)-\sum_{k=1}^{n}\left(7 \right)

C

Quick Shortcuts

The sum of the first n natural numbers is:

1+2+3+\cdots+n=\sum_{k=1}^{n}\left(k\right)= \dfrac{n\left(n+1\right)}{2}

1+2+3+...+250=\sum_{k=1}^{250}\left(k\right)=\dfrac{250\cdot\left(250+1\right)}{2}=\dfrac{250\cdot251}{2}=31{,}375

The sum of the first n squares of natural numbers is:

1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\sum_{k=1}^{n}\left(k^{2}\right)=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}

1^{2}+2^{2}+3^{2}+\cdots+15^{2}=\sum_{k=1}^{15}\left(k^{2}\right)=\dfrac{15\left(15+1\right)\left(2\cdot15+1\right)}{6}=1{,}240

The sum of the first n cubes of natural numbers is:

1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\sum_{k=1}^{n}\left(k^{3}\right)=\left[\dfrac{n\cdot\left(n+1\right)}{2}\right]^{2}

1^{3}+2^{3}+3^{3}+\cdots+20^{3}=\sum_{k=1}^{20}\left(k^{3}\right)=\left[\dfrac{20\cdot\left(20+1\right)}{2}\right]^{2}=44{,}100

If \left\{ a_{1}, a_{2}, ...,a_{n}\right\} is a finite arithmetic sequence with a common difference d, then the sum of the terms of the sequence is:

\sum_{k=1}^{n}a_{k}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=n\cdot\left( \dfrac{a_{1}+a_{n}}{2} \right)

Consider an arithmetic sequence with a_{1}=3 and a_{20}=98.

Calculate the sum of the first 20 terms of the sequence:

a_{1}+a_{2}+a_{3}+\cdots+a_{20}=20\cdot\left( \dfrac{a_{1}+a_{20}}{2} \right)=20\cdot\left( \dfrac{3+98}{2} \right)=1{,}010

If \left\{ a_{1}, a_{2}, ...,a_{n}\right\} is a finite arithmetic sequence with a common difference d, then the sum of the terms of the sequence is:

\sum_{k=1}^{n}a_{k}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\dfrac{n}{2}\cdot\left[2a_{1}+\left(n-1\right)d\right]

Consider an arithmetic sequence with a_{1}=15 and common difference d=10.

Calculate the sum of the first 100 terms of the sequence:

a_{1}+a_{2}+a_{3}+\cdots+a_{100}=\dfrac{100}{2}\cdot\left[2\cdot\left(15\right)+99\cdot\left(10\right)\right]=51{,}000

The sequence of the first n natural numbers \left\{ 1, 2, 3, 4, ..., n \right\} is an arithmetic sequence with first term a_{1}=1 and common difference d=1.

In order to calculate the sum of this sequence, use the formula for the sum of the first terms of an arithmetic sequence:

1+2+3+\cdots+n=\dfrac{n}{2}\cdot\left[2a_{1}+\left(n-1\right)d\right]=\dfrac{n}{2}\cdot\left[2\left(1\right)+\left(n-1\right)\left(1\right)\right]=\dfrac{n}{2}\cdot\left[n+1\right]

This proves the formula that was given for the sum of the first n natural numbers.

Let \left\{ b_{1}, b_{2}, ...,b_{n}\right\} be a finite geometric sequence with a common ratio q\neq1. The sum of the terms of the sequence is:

\sum_{k=1}^{n}b_{k}=b_{1}+b_{2}+b_{3}+\cdots+b_{n}=b_{1}\cdot\dfrac{1-q^{n}}{1-q}

Consider a geometric sequence with b_{1}=2 and common ratio q=3.

We calculate the sum of the first 10 terms of the sequence:

b_{1}+b_{2}+b_{3}+\cdots+b_{10}=2\cdot\dfrac{1-3^{10}}{1-3}=59{,}048

II

Introduction to convergent and divergent series

A

Definition and vocabulary

Partial Sums

The partial sum is the sum of a particular number of terms of a given series or sequence. If \left( a_{n} \right) is a given sequence, then the partial sum of the first N terms can be written as:

S_N=\sum_{i=1}^{N}a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{N}

Given the sequence:

a_{n}=\dfrac{n}{n+1}

The partial sum of the first term is:

S_{1}=a_{1}=\dfrac{1}{2}

The partial sum of the first two terms is:

S_{2}=a_{1}+a_{2}=\dfrac{1}{2}+\dfrac{2}{3}

The partial sum of the first three terms is:

S_{3}=a_{1}+a_{2}+a_{3}=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}

When we try to add an infinite number of terms of a sequence, we are dealing with an infinite series. As we determine what the terms of a sequence will be, we can calculate the sum of an infinite number of terms which sometimes can be a finite number.

If we try to calculate:

\dfrac{1}{2}+\dfrac{1}{2^{2}}+\dfrac{1}{2^{3}}+\cdots+\dfrac{1}{2^{n}}+\cdots

We observe that:

  • \dfrac{1}{2}=0.5
  • \dfrac{1}{2}+\dfrac{1}{4}=0.75
  • \dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}=0.875
  • \dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}=0.9\ 375
  • \dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}=0.96\ 875

Therefore, we can assume intuitively that this infinite sum equals 1.

Infinite series

Let \left\{ a_{n} \right\} be a sequence. An infinite series is an expression of the form:

a_{1}+a_{2}+a_{3}+\cdots=\sum_{n=1}^{\infty}a_{n}

Convergent series

An infinite series \sum_{n=1}^{\infty}a_{n} is convergent to the sum S, if its partial sums are convergent to S :

\lim\limits_{N \to\infty }S_{N}=S

In this case, we write:

\sum_{n=1}^{\infty}a_{n}=S

Consider the series:

\sum_{n=1}^{\infty}\dfrac{1}{2^{n}}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...

For this series:

S_{N}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2^{N}}

Calculate S_{N} using the sum of a geometric sequence formula:

S_{N}=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{2^{N}}=\dfrac{1}{2}\cdot\dfrac{1-\dfrac{1}{2^{N}}}{1-\dfrac{1}{2}}=1-\dfrac{1}{2^{N}}

We have:

\lim\limits_{N \to\infty }S_{N}=\lim\limits_{N \to\infty }\left(1-\dfrac{1}{2^{N}}\right)=1

Therefore, the series converge and:

` \sum_{n=1}^{\infty}\dfrac{1}{2^{n}}=1

Divergent series

Let \{a_n\} be a sequence. Then we say that the series \sum_{n=1}^\infty a_n is divergent if the limit \lim\limits_{N\to \infty}\sum_{n=1}^N a_n is infinite or does not exist.

Consider the series:

\sum_{n=1}^{\infty}{2^{n}}={2}+{4}+{8}+{16}+\cdots

For this series:

S_{N}={2}+2^{2}+2^{3}+ \cdots+{2^{N}}

Calculate S_{N} using the sum of a geometric sequence formula:

S_{N}={2}+2^{2}+2^{3}+ \cdots+{2^{N}}={2}\cdot\dfrac{1-{2^{N}}}{1-{2}}=2\cdot\left(2^{N}-1\right)

We have:

\lim\limits_{N \to\infty }S_{N}=\lim\limits_{N \to\infty }2\cdot\left(2^{N}-1\right)=\infty

Thus the series is divergent to infinity.

Consider the series:

\sum_{n=1}^\infty\left(-1\right)^n=-1+1-1+1-\cdots

Then:

S_N=\begin{cases} 0& \mbox{if } N\mbox{ is even} \cr \cr -1& \mbox{ if } N\mbox{ is odd} \end{cases}

Then the sequence S_N is the sequence which oscillates between -1 and 0. Therefore, the series \sum_{n=1}^\infty\left(-1\right)^n is a divergent series.

Consider the series:

\sum_{n=1}^\infty \dfrac{1}{n}=1+\dfrac{1}{2}+\cdots + \dfrac{1}{n}+\cdots

The above series is a famous example of a divergent series and is called the harmonic series.

B

Convergence and divergence of infinite geometric series

Geometric series

A geometric series with common ratio q\neq0 is a series defined by a geometric sequence c\cdot q^{n}, where c\neq 0. If the series begins at n=0, then:

S=\sum_{n=0}^{\infty}c\cdot q^{n}=c+cq+cq^{2}+cq^{3}+cq^{4}+\cdots

The geometric series with a constant factor c=7 and ratio q=3 is:

\sum_{n=0}^{\infty}7\cdot 3^{n}=7+7\cdot3+7\cdot3^{2}+7\cdot3^{3}+7\cdot3^{4}+7\cdot3^{5}+\cdots

If \left| q \right|\lt1, then the geometric series is convergent and:

S=\sum_{n=0}^{\infty}c\cdot q^{n}=\dfrac{c}{1-q}

Consider the following series:

\sum_{n=0}^{\infty}5\left(\dfrac{2}{3}\right)^{n}

Since \dfrac{2}{3}\lt1, we know that the series is convergent, and:

\sum_{n=0}^{\infty}5\left(\dfrac{2}{3}\right)^{n}=\dfrac{5}{1-\dfrac{2}{3}}=15

If \left| q \right| \geq1, then the geometric series is divergent.

Consider the following geometric series:

\sum_{n=0}^{\infty}5\cdot\left(-2\right)^{n}=5-5\cdot2+5\cdot2^{2}-5\cdot2^{3}+5\cdot2^{4}-5\cdot2^{5}+\cdots

We have:

\left| q \right|=\left| -2 \right|=2 and 2\geqslant1

Therefore, the series is divergent.

If a geometric series begins at k and if \left| q \right|\lt1, then the geometric series is convergent to \dfrac{cq^{k}}{1-q} :

S=\sum_{n=k}^{\infty}c\cdot q^{n}=cq^{k}+cq^{k+1}+cq^{k+2}+\cdots=\dfrac{cq^{k}}{1-q}

Consider the following series:

\sum_{n=2}^{\infty}7\left(\dfrac{3}{5}\right)^{n}

Since \dfrac{3}{5}\lt1, we know that the series is convergent to S and:

S=\dfrac{7\cdot \left(\dfrac{3}{5}\right)^{2}}{1-\dfrac{3}{5}}=\dfrac{63}{10}

In the above theorem, if k=0, then:

S_{N}=\sum_{n=o}^{N}a_{n}

In this situation, the geometric series is convergent to:

\dfrac{cq^{0}}{1-q}=\dfrac{c}{1-q}

Which is the formula from the previous theorem.

See also
  • Exercise : Find the sum of consecutive terms of an arithmetic sequence
  • Exercise : Find the sum of consecutive terms of a geometric sequence
  • Exercise : Find the sum of consecutive integers
  • Exercise : Find the sum of consecutive squares
  • Exercise : Find the sum of consecutive cubes
  • Exercise : Determine whether a geometric series converge or diverge
  • support@kartable.com
  • Legal notice

© Kartable 2025