\cos\left(x\right)=0.6 and \sin\left(x\right)≥0. Which of the following is true?
For any real number x:
sin^2\left(x\right)+cos^2\left(x\right)=1
Here we know that:
\cos\left(x\right)=0.6
Therefore:
sin^2\left(x\right)+\left(.6\right)^2=1
sin^2\left(x\right)+.36=1
sin^2\left(x\right)=.64
Therefore:
\sin\left(x\right)=\pm .8
It is assumed that \sin\left(x\right) \gt 0, hence:
\sin\left(x\right)= .8
Furthermore for any real number x such that \cos\left(x\right)\neq0 :
\tan\left(x\right)=\dfrac{\sin\left(x\right)}{\cos\left(x\right)}
Therefore:
\tan\left(x\right)=\dfrac{.8}{.6}=\dfrac{4}{3}
\sin\left(x\right) = .8 and \tan\left(x\right)=\dfrac{4}{3}
\sin\left(x\right)=0.3 and \cos\left(x\right)≥0 . Which of the following is true?
For any real number x:
sin^2\left(x\right)+cos^2\left(x\right)=1
Here we know that:
\sin\left(x\right)=0.3
Therefore:
cos^2\left(x\right)+\left(.3\right)^2=1
cos^2\left(x\right)+.09=1
cos^2\left(x\right)=.91
Therefore:
\cos\left(x\right)\approx \pm .95
It is assumed that \cos\left(x\right) \gt 0, hence:
\cos\left(x\right)\approx .95
Furthermore for any real number x such that \cos\left(x\right)\neq0 :
\tan\left(x\right)=\dfrac{\sin\left(x\right)}{\cos\left(x\right)}
Therefore:
\tan\left(x\right)=\dfrac{.3}{.95}\approx.31
\cos\left(x\right)\approx .95 and \tan\left(x\right)\approx.31
\sin\left(x\right)=0.6 and \cos\left(x\right)\leq0 . Which of the following is true?
For any real number x:
sin^2\left(x\right)+cos^2\left(x\right)=1
Here we know that:
\sin\left(x\right)=0.6
Therefore:
cos^2\left(x\right)+.36=1
cos^2\left(x\right)=.64
Therefore:
\cos\left(x\right)=\pm .8
It is assumed that \cos\left(x\right) \leq 0, hence:
\cos\left(x\right)= -.8
Furthermore for any real number x such that \cos\left(x\right)\neq0 :
\tan\left(x\right)=\dfrac{\sin\left(x\right)}{\cos\left(x\right)}
Therefore:
\tan\left(x\right)=\dfrac{.6}{-.8}=\dfrac{-3}{4}
\cos\left(x\right)= -.8 and \tan\left(x\right)=-.75
\sin\left(x\right)=0.2 and \cos\left(x\right)\geq0 . Which of the following is true?
For any real number x:
sin^2\left(x\right)+cos^2\left(x\right)=1
Here we know that:
\sin\left(x\right)=0.2
Thus:
cos^2\left(x\right)+.04=1
cos^2\left(x\right)=.96
And:
\cos\left(x\right)\approx \pm .98
It is assumed that \cos\left(x\right) \geq 0, hence:
\cos\left(x\right)\approx .98
Furthermore for any real number x such that \cos\left(x\right)\neq0 :
\tan\left(x\right)=\dfrac{\sin\left(x\right)}{\cos\left(x\right)}
Therefore:
\tan\left(x\right)\approx \dfrac{.2}{.98}\approx.20
\cos\left(x\right)\approx .98 and \tan\left(x\right)\approx .20
\sin\left(x\right)=0.5 and \cos\left(x\right)\geq0 . Which of the following is true?
For any real number x:
sin^2\left(x\right)+cos^2\left(x\right)=1
Here we know that:
\sin\left(x\right)=0.5
Thus:
cos^2\left(x\right)+.25=1
cos^2\left(x\right)=.75
And:
\cos\left(x\right)\approx \pm .87
It is assumed that \cos\left(x\right) \geq 0, hence:
\cos\left(x\right)\approx .87
Furthermore for any real number x such that \cos\left(x\right)\neq0 :
\tan\left(x\right)=\dfrac{\sin\left(x\right)}{\cos\left(x\right)}
Therefore:
\tan\left(x\right)\approx \dfrac{.5}{.87}\approx.57
\cos\left(x\right)\approx .87 and \tan\left(x\right)\approx.57
\cos\left(x\right)=0.3 and \sin\left(x\right)\leq0 . Which of the following is true?
For any real number x:
sin^2\left(x\right)+cos^2\left(x\right)=1
Here we know that:
\cos\left(x\right)=0.3
Thus:
sin^2\left(x\right)+\left(.3\right)^2=1
sin^2\left(x\right)+.09=1
sin^2\left(x\right)=.91
And:
\sin\left(x\right)\approx \pm .95
It is assumed that \sin\left(x\right) \leq 0, hence:
\sin\left(x\right)\approx -.95
Furthermore for any real number x such that \cos\left(x\right)\neq0 :
\tan\left(x\right)=\dfrac{\sin\left(x\right)}{\cos\left(x\right)}
Therefore:
\tan\left(x\right)=\dfrac{-.95}{.3}\approx -3.16
\sin\left(x\right)\approx -.95 and \tan\left(x\right)=-3.16
\cos\left(x\right)=0.2 and \sin\left(x\right)\geq0 . Which of the following is true?
For any real number x:
sin^2\left(x\right)+cos^2\left(x\right)=1
Here we know that:
\cos\left(x\right)=0.2
Thus:
sin^2\left(x\right)+\left(.2\right)^2=1
sin^2\left(x\right)+.04=1
sin^2\left(x\right)=.96
And:
\sin\left(x\right)\approx \pm .98
It is assumed that \sin\left(x\right) \geq 0, hence:
\sin\left(x\right)\approx .98
Furthermore for any real number x such that \cos\left(x\right)\neq0 :
\tan\left(x\right)=\dfrac{\sin\left(x\right)}{\cos\left(x\right)}
Therefore:
\tan\left(x\right)\approx \dfrac{.98}{.2}\approx 4.9
\sin\left(x\right)\approx .98 and \tan\left(x\right)\approx 4.9