01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra II
  4. Exercise : Convert a product of trigonometric functions into a sum (or difference)

Convert a product of trigonometric functions into a sum (or difference) Algebra II

Convert the following into a sum or difference of trigonometric functions.

\sin\left(\dfrac{3}{4}x\right) \cdot \cos\left(\dfrac{5\pi}{8}x\right)

.

If a and b are two real numbers, then:

\sin\left(a\right)\cos\left(b\right) = \dfrac{1}{2}\sin\left(a+b\right) + \dfrac{1}{2}\sin\left(a - b\right)

Here:

  • a = \dfrac{3}{4}x
  • b = \dfrac{5\pi}{8}x

Therefore:

\sin\left(\dfrac{3}{4}x\right)\cos\left(\dfrac{5\pi}{8}x\right) = \dfrac{1}{2}\sin\left(\dfrac{3}{4}x+\dfrac{5\pi}{8}x\right) + \dfrac{1}{2}\sin\left(\dfrac{3}{4}x - \dfrac{5\pi}{8}x\right)

\sin\left(\dfrac{3}{4}x\right)\cos\left(\dfrac{5\pi}{8}x\right) = \dfrac{1}{2}\sin\left(\dfrac{6}{8}x+\dfrac{5\pi}{8}x\right) + \dfrac{1}{2}\sin\left(\dfrac{6}{8}x - \dfrac{5\pi}{8}x\right)

\sin\left(\dfrac{3}{4}x\right)\cos\left(\dfrac{5\pi}{8}x\right) = \dfrac{1}{2}\sin\left(\dfrac{6+5\pi}{8}x\right) + \dfrac{1}{2}\sin\left(\dfrac{6-5\pi}{8}x\right)

\cos\left(2x\right)\sin\left(4x\right)\cos\left(4x\right)

.

Multiplying and dividing the expression by 2 and rearranging gives:

\cos\left(2x\right)\sin\left(4x\right)\cos\left(4x\right)=\dfrac{1}{2}\times\cos\left(2x\right)\left[2\times \sin\left(4x\right)\cos\left(4x\right)\right]

Since 2\sin\left(\theta\right)\cos\left(\theta\right)=\sin\left(2\theta\right) :

\dfrac{1}{2}\times\cos\left(2x\right)\left[2\times \sin\left(4x\right)\cos\left(4x\right)\right]=\dfrac{1}{2}\cos\left(2x\right)\sin\left(2\left(4x\right)\right)=\dfrac{1}{2}\cos\left(2x\right)\sin\left(8x\right)

Applying the product-to-sum identity for trigonometric functions:

\sin\left(a\right)\cos\left(B\right)=\dfrac{1}{2}\left[\sin\left(a+b\right)+\sin\left(a-b\right)\right]

Here:

  • a=8x
  • b=2x

Therefore:

\dfrac{1}{2}\cos\left(2x\right)\sin\left(8x\right)=\dfrac{1}{4}\left[\sin\left(8x+2x\right)+\sin\left(8x-2x\right)\right]
\dfrac{1}{2}\cos\left(2x\right)\sin\left(8x\right)=\dfrac{1}{4}\left[\sin\left(10x\right)+\sin\left(6x\right)\right]
\dfrac{1}{2}\cos\left(2x\right)\sin\left(8x\right)= \dfrac{1}{4}\sin\left(10x\right)+\dfrac{1}{4}\sin\left(6x\right)

\dfrac{1}{4}\sin\left(10x\right)+\dfrac{1}{4}\sin\left(6x\right)

\sin\left(2x\right)\sin\left(4x\right)

.

For any two real numbers a and b, we have:

\sin\left(a\right)\sin\left(b\right) = \dfrac{1}{2}\cos\left(a-b\right) - \dfrac{1}{2}\cos\left(a + b\right)

Here:

  • a=2x
  • b=4x

Therefore:

\sin\left(2x\right)\sin\left(4x\right)

=\dfrac{1}{2}\cos\left(2x-4x\right) - \dfrac{1}{2}\cos\left(2x + 4x\right)
=\dfrac{1}{2}\cos\left(-2x\right) - \dfrac{1}{2}\cos\left(6x\right)

Applying the identity \cos\left(-x\right)=\cos\left(x\right) :

\dfrac{1}{2}\cos\left(2x\right) - \dfrac{1}{2}\cos\left(6x\right)

\dfrac{1}{2}\cos\left(2x\right) - \dfrac{1}{2}\cos\left(6x\right)

-\sin\left(3x\right)\sin\left(x\right)

For any two real numbers a and b, we have:

\sin\left(a\right)\sin\left(b\right) = \dfrac{1}{2}\cos\left(a-b\right) - \dfrac{1}{2}\cos\left(a + b\right)

Here:

  • a=3x
  • b=x

Therefore:

-\sin\left(3x\right)\sin\left(x\right)
=-\left[\dfrac{1}{2}\cos\left(3x-x\right) - \dfrac{1}{2}\cos\left(3x + x\right)\right]

=-\left[\dfrac{1}{2}\cos\left(2x\right) - \dfrac{1}{2}\cos\left(4x\right)\right]
=\dfrac{1}{2}\cos\left(4x\right) - \dfrac{1}{2}\cos\left(2x\right)

\dfrac{1}{2}\cos\left(4x\right) - \dfrac{1}{2}\cos\left(2x\right)

\cos\left(\dfrac{x}{2}\right)\cos\left(\dfrac{3x}{2}\right)

For any two real numbers a and b, we have:

\cos\left(a\right)\cos\left(b\right) = \dfrac{1}{2}\cos\left(a+b\right)+ \dfrac{1}{2}\cos\left(a - b\right):

Here:

  • a=\dfrac{x}{2}
  • b=\dfrac{3x}{2}

Therefore:

\cos\left(\dfrac{x}{2}\right)\cos\left(\dfrac{3x}{2}\right)

=\dfrac{1}{2}\cos\left(\dfrac{x}{2}+\dfrac{3x}{2}\right) + \dfrac{1}{2}\cos\left(\dfrac{x}{2}-\dfrac{3x}{2}\right)
=\dfrac{1}{2}\cos\left(2x\right) + \dfrac{1}{2}\cos\left(-x\right)

Applying the identity \cos\left(-x\right)=\cos\left(x\right) :

=\dfrac{1}{2}\cos\left(2x\right) - \dfrac{1}{2}\cos\left(x\right)

\dfrac{1}{2}\cos\left(2x\right) + \dfrac{1}{2}\cos\left(x\right)

\sin\left(\dfrac{x}{2}\right)\cos\left(\dfrac{x}{3}\right)

.

For any two real numbers a and b, we have:

\sin\left(a\right)\cos\left(b\right) = \dfrac{1}{2}\sin\left(a+b\right) + \dfrac{1}{2}\sin\left(a - b\right)

Here:

  • a=\dfrac{x}{2}
  • b=\dfrac{x}{3}

Therefore:

\sin\left(\dfrac{x}{2}\right)\cos\left(\dfrac{x}{3}\right)

=\dfrac{1}{2}\sin\left(\dfrac{x}{2}+\dfrac{x}{3}\right) + \dfrac{1}{2}\sin\left(\dfrac{x}{2}-\dfrac{x}{3}\right)
=\dfrac{1}{2}\sin\left(\dfrac{5x}{6}\right) + \dfrac{1}{2}\sin\left(\dfrac{x}{6}\right)

\dfrac{1}{2}\sin\left(\dfrac{5x}{6}\right) + \dfrac{1}{2}\sin\left(\dfrac{x}{6}\right)

\dfrac{\sqrt{3}}{2}\cos\left(\dfrac{x}{3}\right)

.

Since \sin\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}, the expression can become:

\sin\left(\dfrac{\pi}{3}\right)\cos\left(\dfrac{x}{3}\right)

For any two real numbers a and b, we have:

\sin\left(a\right)\cos\left(b\right) = \dfrac{1}{2}\sin\left(a+b\right) +\dfrac{1}{2}\sin\left(a - b\right)

Here:

  • a=\dfrac{\pi}{3}
  • b=\dfrac{x}{3}

Therefore:

\sin\left(\dfrac{\pi}{3}\right)\cos\left(\dfrac{x}{3}\right)

=\dfrac{1}{2}\sin\left(\dfrac{\pi}{3}+\dfrac{x}{3}\right) + \dfrac{1}{2}\sin\left(\dfrac{\pi}{3}-\dfrac{x}{3}\right)
=\dfrac{1}{2}\sin\left(\dfrac{\pi+x}{3}\right) +\dfrac{1}{2}\sin\left(\dfrac{\pi-x}{3}\right)

\dfrac{1}{2}\sin\left(\dfrac{\pi+x}{3}\right) +\dfrac{1}{2}\sin\left(\dfrac{\pi-x}{3}\right)

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Trigonometric identities, equations and laws
  • Exercise : Calculate sin(x) (or cos(x)) and tan(x) when cos(x) (or sin(x)) is known
  • Exercise : Convert a sum (or difference) of trigonometric functions into a product
  • Exercise : Solve equations of the form cos(x)=a
  • Exercise : Solve equations of the form sin(x)=a
  • Exercise : Solve equations using the trigonometric identities
  • Exercise : Solve quadratric equations that involve trigonometric functions
  • support@kartable.com
  • Legal notice

© Kartable 2026