Find a triangular system that is equivalent to the following systems, using elementary row operations.
\begin{cases} x+3y-z=2 \cr \cr 3x+2y+3z=4 \cr \cr x+y-z=2 \end{cases}
\begin{cases} 2x-3y=2 \cr \cr x+2y=5 \end{cases}
\begin{cases} x-4y=9 \cr \cr 3x+8y=7 \end{cases}
\begin{cases} 2x+5y=3 \cr \cr 3x+4y=-1 \end{cases}
\begin{cases} x+y-z=2 \cr \cr 2x+2y+3z=7 \cr \cr 3x-y-2z=0 \end{cases}
\begin{cases} x-z=2 \cr \cr x+y=4 \cr \cr y-z=-2 \end{cases}
\begin{cases} x+y+z=5 \cr \cr 2x+2y+3z=10 \cr \cr 4x-5y+z=2 \end{cases}