Find the equations of the following parabolas. y=\left(x-1\right)^2+1 y=\left(x-1\right)^2+2 y=\left(x+1\right)^2-1 y=2\left(x-1\right)^2+1 y=-2\left(x+1\right)^2+1 y=-\left(x+1\right)^2+2 y=3\left(x-1\right)^2-1 y=-2\left(x-4\right)^2+5 x=\left(y+1\right)^2+1 x=\left(y-1\right)^2+5 y=5\left(x+2\right)^2-1 y=3\left(x-1\right)^2-2 x=-\left(y+2\right)^2+3 x=-3\left(y-1\right)^2+2 x=\left(y+4\right)^2-5 x=2\left(y-1\right)^2+1 x=\left(y-3\right)^2-2 x=\left(y-1\right)^2+3 x=-2\left(y+1\right)^2-1 x=2\left(y-1\right)^2+2 y=\left(x+3\right)^2+3 x=\left(y-1\right)^2+2 x=\left(y+1\right)^2-1 y=2\left(x-1\right)^2+1 y=-\dfrac{1}{2}\left(x+1\right)^2-2 y=\dfrac{1}{9}\left(x-1\right)^2+2 y=-3\left(x+1\right)^2-4 x=2\left(y-1\right)^2+1
y=-\dfrac{1}{2}\left(x+1\right)^2-2 y=\dfrac{1}{9}\left(x-1\right)^2+2 y=-3\left(x+1\right)^2-4 x=2\left(y-1\right)^2+1
y=-\dfrac{1}{2}\left(x+1\right)^2-2 y=\dfrac{1}{9}\left(x-1\right)^2+2 y=-3\left(x+1\right)^2-4 x=2\left(y-1\right)^2+1