Given that the following figure is a trapezoid, determine the missing value a.

The quadrilateral is a trapezoid. So drawing the altitude \overline{DH}, the quadrilateral HBCD is a rectangle:

Hence:
DH =BC =3
And:
BH = CD =2
Also:
AH = 6-BH = 4
Using the Pythagoras theorem, we have:
a= \sqrt{3^2+4^2}=5
a=5
Given that the following figure is a rhombus, determine the missing value a.

The quadrilateral is a rhombus. Thus:
DC =AC =5
And:
OC= BO=3
Using the Pythagoras theorem, we have:
a= \sqrt{5^2+3^2}=4
a=4
Given that the following figure is a parallelogram, determine the missing value a.

The quadrilateral AHCH' is a rectangle with heigth \overline{DH'} :

Hence:
AH' =BC =5
We know that:
\sin{\widehat{a}} =\dfrac{AH'}{AD} = \dfrac{5}{10}= \dfrac{1}{2}
Therefore:
\widehat{a}=30^\circ
\widehat{a}=30^\circ
Given that the following figure is a square, determine the missing value a.

The quadrilateral is a square. Thus:
BD = CD =a
Using the Pythagoras theorem, we have:
\left(BC\right)^2={a^2+a^2}
8^2 = 2a^2
a^2= \dfrac{64}{2}=32
a=\sqrt{32}=4\sqrt{2}
a=4\sqrt{2}
Given that the following figure is a kite, determine the missing value \widehat{A}.

The quadrilateral is a kite. Thus:
CD=BC =5
The triangle BCD is a equilateral. Therefore:
\widehat{CDB} = 60^\circ
And:
\widehat{ADB} = 130^\circ -\widehat{CDB} = 130^\circ-60^\circ = 70^\circ
Since ABCD is a quadrilateral, we have:
\widehat{A} + \widehat{B} + \widehat{C}+ \widehat{D} = 360^\circ
\widehat{A} = 360^\circ- \widehat{B} - \widehat{C}- \widehat{D}
\widehat{A} = 360^\circ- 130^\circ - 60^\circ- 130^\circ
\widehat{A} = 40^\circ
\widehat{A} = 40^\circ
Given that the following figure is a rectangle, determine the missing value a.

The quadrilateral is a rectangle. Thus:
CD=AB =a
We know that:
\cos\left(\widehat{DAC}\right) = \dfrac{AD}{AC}
\cos\left(60^\circ\right) = \dfrac{4}{AC}
\dfrac{1}{2}= \dfrac{4}{AC}
AC=8
Using the Pythagoras theorem, we have:
a= \sqrt{8^2-4^2}=\sqrt{48}=4\sqrt{3}
a=4\sqrt{3}
Given that the following figure is a rhombus, determine the missing value a.

The quadrilateral is a rhombus so we have:
BC =DC =5
The triangle BDC is isosceles. Therefore:
\widehat{a} = \widehat{BDC}
Hence:
\widehat{a}+\widehat{a}+60^\circ=180^\circ
2\widehat{a}=120^\circ
\widehat{a}=60^\circ
\widehat{a}=60^\circ