01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Geometry
  4. Exercise : Use the general properties of quadrilaterals to determine measures of angles or lengths

Use the general properties of quadrilaterals to determine measures of angles or lengths Geometry

Find the missing values in the following quadrilaterals.

-

The sum of the angles of a quadrilateral is 360^\circ . Therefore:

90^\circ+90^\circ+110^\circ+\widehat{a}=360^\circ

\widehat{a}=360^\circ-110^\circ-90^\circ-90^\circ

\alpha=70°

-

The sum of the angles of a quadrilateral is 360^\circ . Therefore:

\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^\circ

Since the quadrilateral is a rhombus, we know:

\widehat{A} = \widehat{C}

And:

\widehat{B}=\widehat{D}

Therefore:

2\widehat{A}+2\widehat{B} = 360^\circ

60^\circ+2\widehat{B} = 360^\circ

\widehat{B} = 150^\circ

\widehat{B}=150°

-

The sum of the angles of a quadrilateral is 360^\circ . Therefore:

90^\circ+70^\circ+50^\circ+\widehat{a}=360^\circ

\widehat{a}=360^\circ-90^\circ-50^\circ-70^\circ

\widehat{a}= 150^\circ

\widehat{a}=150°

-

The sum of the angles of a quadrilateral is 360^\circ . Therefore:

\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^\circ

Since the quadrilateral is a kite, we know:

\widehat{B}=\widehat{D}

Therefore:

2\widehat{D}+35^\circ+65^\circ = 360^\circ

2\widehat{D} = 260^\circ

\widehat{D} = 130^\circ

\widehat{D} = 130^\circ

-

The sum of the angles of a quadrilateral is 360^\circ . Therefore:

\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^\circ

\widehat{a}+\widehat{a}+70^\circ + 70^\circ = 360^\circ

2\widehat{a}=360^\circ-140^\circ

\widehat{a}=110^\circ

\widehat{a}= 110^\circ

-

The sum of the angles of a quadrilateral is 360^\circ . Therefore:

\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^\circ

\widehat{a}+2\widehat{a}+3\widehat{a}+144^\circ=360^\circ

6\widehat{a}=216^\circ

\widehat{a}=36^\circ

\widehat{a}= 36^\circ

-

The sum of the angles of a quadrilateral is 360^\circ . Therefore:

\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^\circ

20^\circ+30^\circ+40^\circ+\widehat{D}=360^\circ

Hence:

\widehat{D} =270^\circ

Therefore:

\widehat{a} = 360^\circ-270^\circ= 90^\circ

\widehat{a}= 90^\circ

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Quadrilaterals
  • Exercise : Identify special quadrilaterals
  • Exercise : Determine lengths and angles in special quadrilaterals
  • Exercise : Calculate the area of special quadrilaterals
  • Exercise : Calculate the perimeter of special quadrilaterals
  • Exercise : Complete proofs involving quadrilaterals
  • support@kartable.com
  • Legal notice

© Kartable 2026