Find the missing values in the following quadrilaterals.

The sum of the angles of a quadrilateral is 360^\circ . Therefore:
90^\circ+90^\circ+110^\circ+\widehat{a}=360^\circ
\widehat{a}=360^\circ-110^\circ-90^\circ-90^\circ
\alpha=70°

The sum of the angles of a quadrilateral is 360^\circ . Therefore:
\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^\circ
Since the quadrilateral is a rhombus, we know:
\widehat{A} = \widehat{C}
And:
\widehat{B}=\widehat{D}
Therefore:
2\widehat{A}+2\widehat{B} = 360^\circ
60^\circ+2\widehat{B} = 360^\circ
\widehat{B} = 150^\circ
\widehat{B}=150°

The sum of the angles of a quadrilateral is 360^\circ . Therefore:
90^\circ+70^\circ+50^\circ+\widehat{a}=360^\circ
\widehat{a}=360^\circ-90^\circ-50^\circ-70^\circ
\widehat{a}= 150^\circ
\widehat{a}=150°

The sum of the angles of a quadrilateral is 360^\circ . Therefore:
\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^\circ
Since the quadrilateral is a kite, we know:
\widehat{B}=\widehat{D}
Therefore:
2\widehat{D}+35^\circ+65^\circ = 360^\circ
2\widehat{D} = 260^\circ
\widehat{D} = 130^\circ
\widehat{D} = 130^\circ

The sum of the angles of a quadrilateral is 360^\circ . Therefore:
\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^\circ
\widehat{a}+\widehat{a}+70^\circ + 70^\circ = 360^\circ
2\widehat{a}=360^\circ-140^\circ
\widehat{a}=110^\circ
\widehat{a}= 110^\circ

The sum of the angles of a quadrilateral is 360^\circ . Therefore:
\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^\circ
\widehat{a}+2\widehat{a}+3\widehat{a}+144^\circ=360^\circ
6\widehat{a}=216^\circ
\widehat{a}=36^\circ
\widehat{a}= 36^\circ

The sum of the angles of a quadrilateral is 360^\circ . Therefore:
\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^\circ
20^\circ+30^\circ+40^\circ+\widehat{D}=360^\circ
Hence:
\widehat{D} =270^\circ
Therefore:
\widehat{a} = 360^\circ-270^\circ= 90^\circ
\widehat{a}= 90^\circ