If \overline{AM} is the bisector of \widehat{A}, determine the length of the \overline{CM}.

According to the bisector theorem, we have:
\dfrac{AB}{AC}=\dfrac{BM}{CM}
Thus, we can write:
\dfrac{8}{7}=\dfrac{3}{CM}
CM=\dfrac{7 \times 3}{8}=\dfrac{21}{8}
CM=\dfrac{21}{8}
If \overline{AM} is the bisector of \widehat{A}, determine the length of the \overline{AC}.

According to the bisector theorem, we have:
\dfrac{AB}{AC}=\dfrac{BM}{CM}
Thus, we can write:
\dfrac{7}{AC}=\dfrac{4}{3}
AC=\dfrac{7 \times 3}{4}=\dfrac{21}{4}
AC=\dfrac{21}{4}
If \overline{AM} is the bisector of \widehat{A}, determine the length of the \overline{AC}.

According to the bisector theorem, we have:
\dfrac{AB}{AC}=\dfrac{BM}{CM}
Thus, we can write:
\dfrac{6}{AC}=\dfrac{5}{4}
AC=\dfrac{6 \times 4}{5}=\dfrac{24}{5}
AC=\dfrac{24}{5}
If \overline{AM} is the bisector of \widehat{A}, determine the measure of \widehat{B}.

According to the bisector theorem, we have:
\dfrac{AB}{AC}=\dfrac{BM}{CM}
Thus, we can write:
\dfrac{AB}{AC}=\dfrac{3}{3}=1
Hence:
AB = AC
We can conclude that ABC is an isosceles triangle. So:
\widehat{B} = \widehat{C}
Since \overline{AM} is a bisector, we have:
\widehat{b} = \widehat{a} = 20^\circ
Therefore:
\widehat{A} = 40^\circ
\widehat{A}+\widehat{B}+\widehat{C} = 180^\circ
40^\circ + \widehat{B} + \widehat{B} = 180^\circ
2\widehat{B} = 140^\circ
\widehat{B} = 70^\circ
\widehat{B} = 70^\circ
If \overline{AM} is the bisector of \widehat{A}, determine the length of the \overline{BM}.

According to the bisector theorem, we have:
\dfrac{AB}{AC}=\dfrac{BM}{CM}
Thus, we can write:
\dfrac{9}{5}=\dfrac{BM}{3}
BM=\dfrac{9 \times 3}{5}=\dfrac{27}{5}
BM=\dfrac{27}{5}
If \overline{AM} is the bisector of \widehat{A}, determine the length of the \overline{BM}.

According to the bisector theorem, we have:
\dfrac{AB}{AC}=\dfrac{BM}{CM}
Thus, we can write:
\dfrac{9}{4}=\dfrac{BM}{5}
BM=\dfrac{9 \times 5}{4}=\dfrac{45}{4}
BM=\dfrac{45}{4}
If \overline{AM} is the bisector of \widehat{A}, determine the length of the \overline{AC}.

According to the bisector theorem, we have:
\dfrac{AB}{AC}=\dfrac{BM}{CM}
Thus, we can write:
\dfrac{5}{AC}=\dfrac{4}{6}
AC=\dfrac{5 \times 6}{4}=\dfrac{30}4
AC=\dfrac{30}4