01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Geometry
  4. Exercise : Use the law of cosine to determine lengths and angles

Use the law of cosine to determine lengths and angles Geometry

Use the law of cosine to find the following missing values.

-

According to the law of cosine, for a triangle ABC with AB=x and AC=y we have:

BC = \sqrt{x^2+y^2-2xy\cos\left(\widehat{A}\right)}

Here, we have:

  • AB=2
  • AC=3
  • \angle A=60°

Therefore:

c = \sqrt{2^2 + 3^2 -\left(2\times 2\times 3 \times\cos\left(60^\circ\right)\right)}

c=\sqrt{4+9 -\left( 12 \times{\dfrac{1}{2}}\right)}

c=\sqrt{7}

-

According to the law of cosine, for a triangle ABC with AB=x, AC=y and BC=z, we have:

z^2 = x^2+y^2-2xy\cos\left(\widehat{A}\right)

Here, we have:

  • AB=\sqrt8
  • AC=\sqrt{5}
  • BC=3

Therefore:

3^2 = \left({\sqrt 5}\right)^2 + \left({\sqrt 8}\right)^2 -\left(2\times {\sqrt 5}\times {\sqrt 8} \times\cos\left(\theta\right)\right)

9 = 5 + 8 -2 {\sqrt 40}\cos\left(\theta\right)

-4 = -2 {\sqrt 40}\cos\left(\theta\right)

\cos\left(\theta\right) =\dfrac{2}{\sqrt{40}} = \dfrac{2}{\sqrt{4}\times\sqrt{10}} =\dfrac{1}{\sqrt{10}}= \dfrac{\sqrt{10}}{10}

\cos\left(\theta\right)= \dfrac{\sqrt{10}}{10}

-

According to the law of cosine, for a triangle ABC with AB=x, AC=y and BC=z, we have:

z^2 = x^2+y^2-2xy\cos\left(\widehat{A}\right)

Here, we have:

  • AB=\sqrt3
  • AC=4
  • BC=\sqrt7

Therefore:

\left(\sqrt7\right)^2 = \left({\sqrt 3}\right)^2 + \left({4}\right)^2 -\left(2\times {\sqrt 3}\times {4} \times\cos\left(\widehat{A}\right)\right)

7 = 3 + 16 -\left(8\times {\sqrt 3}\times\cos\left(\widehat{A}\right)\right)

-12= -\left(8\times {\sqrt 3}\times\cos\left(\widehat{A}\right)\right)

\cos\left(\widehat{A}\right)= \dfrac{12}{8\times {\sqrt 3}}= \dfrac{\sqrt 3}{2}

\widehat{A} = 30^\circ

\widehat{A}=30^\circ

-

According to the law of cosine, for a triangle ABC with AB=x, BC=y and AC=z, we have:

z^2 = x^2+y^2-2xy\cos\left(\widehat{B}\right)

Here, we have:

  • AC=\sqrt{2}
  • BC=2

Therefore:

AB= \sqrt{\left({\sqrt 2}\right)^2 + \left(2\right)^2 -\left(2\times {\sqrt 2}\times {2} \times\cos\left(\widehat{B}\right)\right)}

= \sqrt{2 + 4 -\left(2\times {\sqrt 2}\times {2} \times\dfrac{\sqrt{2}}{2}\right)}=\sqrt{2}

Hence:

AB=\sqrt{2}

AB=\sqrt{2}

-

According to the law of cosine, for a triangle ABC with AB=x, AC=y and BC=z, we have:

z^2 = x^2+y^2-2xy\cos\left(\widehat{A}\right)

Here, we have:

  • AB=3
  • AC=4

Therefore:

3^2 = \left({3}\right)^2 + \left({4}\right)^2 -\left(2\times {3}\times {4} \times\cos\left(60\right)\right)

BC =\sqrt{9 + 16 -\left(2\times3\times 4\times \dfrac{1}{2}\right)} = \sqrt{13}

BC =\sqrt{13}

-

According to the law of cosine, for a triangle ABC with AB=x, AC=y and BC=z, we have:

z^2 = x^2+y^2-2xy\cos\left(\widehat{A}\right)

Here, we have:

  • AB=\sqrt2
  • AC=\sqrt{2}
  • BC=2

Therefore:

2^2 = \left({\sqrt 2}\right)^2 + \left({\sqrt 2}\right)^2 -\left(2\times {\sqrt 2}\times {\sqrt 2} \times\cos\left(\widehat{A}\right)\right)

4 = 2 + 2 -4\cos\left(\widehat{A}\right)

4\cos\left(\widehat{A}\right)=0

\widehat{A}=90^\circ

\widehat{A}=90^\circ

-

According to the law of cosine, for a triangle ABC with AB=x, AC=y and BC=z, we have:

z^2 = x^2+y^2-2xy\cos\left(\widehat{A}\right)

Here, we have:

  • BC=\sqrt{21}
  • AC=4

Therefore:

\left({\sqrt 21}\right)^2 = 4^2 + x^2 -\left(2\times 4 \times x\times\cos\left(60^\circ\right)\right)

21= \left(16 + x^2 -\left(8\times x\times \dfrac{1}{2}\right)\right)

x^2 -4 x-5=0

\left(x+1\right)\left(x-5\right)=0

  • x=-1
  • x=5

Of course x=-1 is not acceptable. Hence x=5.

x=5

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Triangles
  • Exercise : Find the area of a triangle
  • Exercise : Identify special triangles
  • Exercise : Use properties of special triangles to determine lengths, angles, heights
  • Exercise : Use congruence to determine measures
  • Exercise : Complete proofs involving triangles
  • support@kartable.com
  • Legal notice

© Kartable 2026