01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Precalculus
  4. Exercise : Simplify expressions involving exponents

Simplify expressions involving exponents Precalculus

Simplify the following expressions in which a, x and y are real numbers greater than 0.

\dfrac{a^3.a^{-2}.a^{1/4}}{a^2.a^{-1}}

For any real numbers a, b and c with a\gt0 we have:

a^b\times a^c=a^{b+c}

Therefore:

\dfrac{a^3.a^{-2}.a^{1/4}}{a^2.a^{-1}} = \dfrac{a^{3+\left(-2\right)+1/4}}{a^{2+\left(-1\right)}} = \dfrac{a^{5/4}}{a}

Furthermore, for any real numbers a, b and c with a\gt0 we have:

\dfrac{a^b}{a^c}=a^{b-c}

Therefore:

\dfrac{a^3.a^{-2}.a^{1/4}}{a^2.a^{-1}} =a^{5/4-1}

\dfrac{a^3.a^{-2}.a^{1/4}}{a^2.a^{-1}}= a^{1/4}

\dfrac{2\times2^{-2}\times2^{4}}{2^{3}\times2^{1/2}}

For any real numbers a, b and c with a\gt0 we have:

a^b\times a^c=a^{b+c}

Therefore:

\dfrac{2\times2^{-2}\times2^{4}}{2^{3}\times2^{1/2}} = \dfrac{2^{1+\left(-2\right)+4}}{2^{3+1/2}} = \dfrac{2^3}{2^{7/2}}

Furthermore, for any real numbers a, b and c with a\gt0 we have:

\dfrac{a^b}{a^c}=a^{b-c}

Therefore:

\dfrac{2\times2^{-2}\times2^{4}}{2^{3}\times2^{1/2}} =2^{3-7/2} =2^{-1/2} =\dfrac{1}{\sqrt{2}} = \dfrac{\sqrt{2}}{2}

\dfrac{2\times2^{-2}\times2^{4}}{2^{3}\times2^{1/2}} = \dfrac{\sqrt{2}}{2}

\dfrac{a^3.a^{-1/2}}{a^2.a^{1/2}.a}

For any real numbers a, b and c with a\gt0 we have:

a^b\times a^c=a^{b+c}

Therefore:

\dfrac{a^3.a^{-1/2}}{a^2.a^{1/2}.a} = \dfrac{a^{3-1/2}}{a^{2+1/2+1}} = \dfrac{a^{5/2}}{a^{7/2}}

Furthermore, for any real numbers a, b and c with a\gt0 we have:

\dfrac{a^b}{a^c}=a^{b-c}

Therefore:

\dfrac{a^3.a^{-1/2}}{a^2.a^{1/2}.a} = a^{5/2 - 7/2}= a^{-1}= \dfrac{1}{a}

\dfrac{a^3.a^{-1/2}}{a^2.a^{1/2}.a} = \dfrac{1}{a}

\dfrac{2^{3/2}.x^3.y^{-2}}{2^{5/2}.x^{1/3}.y^{1/2}}

To avoid confusion, we write this expression as a product of three expressions of each type:

\dfrac{2^{3/2}x^3.y^{-2}}{2^{5/2}x^{1/3}.y^{1/2}} = \dfrac{2^{3/2}}{2^{5/2}} . \dfrac{x^{3}}{x^{1/3}} .\dfrac{y^{-2}}{y^{1/2}}

For any real numbers a, b and c with a\gt0 we have:

\dfrac{a^b}{a^c}=a^{b-c}

Therefore:

\dfrac{2^{3/2}x^3.y^{-2}}{2^{5/2}x^{1/3}.y^{1/2}} \\=2^{{3/2}-{5/2}} . {x^{3}-{1/3}} .y^{-2-1/2} \\= 2^{-1} . x^{8/3} .y^{-5/2}\\=\dfrac{1}{2} . x^{8/3} .y^{-5/2}

\dfrac{2^{3/2}x^3.y^{-2}}{2^{5/2}x^{1/3}.y^{1/2}} =\dfrac{1}{2} . x^{8/3} .y^{-5/2}

\dfrac{\left(a^3.a^{-1/4}\right)^4}{\left(a^{1/3}.a^{-1/2}\right)^3}\\\\\\

For any real numbers a, b and c with a\gt0 we have:

a^b\times a^c=a^{b+c}

Therefore:

\dfrac{\left(a^3.a^{-1/4}\right)^4}{\left(a^{1/3}.a^{-1/2}\right)^3} = \dfrac{\left(a^{3-1/4}\right)^4}{\left(a^{1/3-1/2}\right)^3} = \dfrac{\left(a^{11/4}\right)^4}{\left(a^{-1/6}\right)^3}

Furthermore, for any real numbers a, b and c with a\gt0 we have:

\left(a^b\right)^c = a^{bc}

Thus:

\dfrac{\left(a^{11/4}\right)^4}{\left(a^{-1/6}\right)^3}= \dfrac{a^{11/4 \times 4}}{a^{-1/6 \times 3}}= \dfrac{a^{11}}{a^{-1/2}}

On the other hand, for any real numbers a, b and c we have:

\dfrac{a^b}{a^c}=a^{b-c}

Therefore:

\dfrac{a^{1}}{a^{-1/2}} =a^{11+1/2}= a^{23/2}

Thus:

\dfrac{\left(a^3.a^{-1/4}\right)^4}{\left(a^{1/3}.a^{-1/2}\right)^3} = a^{23/2}

\dfrac{4\times 5^{-1/2}\times 5^{3}}{5^{4}\times 4^{1/2}}

We write this as a product of two expressions:

\dfrac{4\times 5^{-1/2}\times 5^{3}}{5^{4}\times 4^{1/2}} = \dfrac{4}{4^{1/2}}\times \dfrac{ 5^{-1/2} 5^{3}}{5^4}

For any real numbers a, b and c with a\gt0 we have:

a^b\times a^c=a^{b+c}

Thus:

5^{-1/2} 5^{3} = 5^{5/2}

Also, observe that:

4^{1/2} =2

Therefore:

\dfrac{4\times 5^{-1/2}\times 5^{3}}{5^{4}\times 4^{1/2}} = \dfrac{4}{4^{1/2}}\times \dfrac{ 5^{-1/2} 5^{3}}{5^4} = 2 \times \dfrac{5^{5/2}}{5^4}

Furthermore, for any real numbers a, b and c with a\gt0 we have:

\dfrac{a^b}{a^c}=a^{b-c}

Therefore:

\dfrac{5^{5/2}}{5^4} = 5^{5/2-4} = 5^{-3/2}

Thus we have:

\dfrac{4\times 5^{-1/2}\times 5^{3}}{5^{4}\times 4^{1/2}} = 2 \times 5^{-3/2}

\dfrac{\left(a^3.b^{-1/6}\right)^3}{\left(a^{-2}.b^{-1/2}\right)^2}\\\\\\

For any real numbers a, b and c with a\gt0 we have:

\left(a.b\right)^c = a^c .b^c

So, we have:

\dfrac{\left(a^3.b^{-1/6}\right)^3}{\left(a^{-2}.b^{-1/2}\right)^2} = \dfrac{\left(a^3\right)^3. \left(b^{-1/6}\right)^3}{\left(a^{-2}\right)^2. \left(b^{-1/2}\right)^2}

On the other hand, for any real numbers a, b and c with a\gt0 we have:

\left(a^b\right)^c = a^{bc}

Thus:

\dfrac{\left(a^3.b^{-1/6}\right)^3}{\left(a^{-2}.b^{-1/2}\right)^2} = \dfrac{a^9.b^{-1/2}}{a^{-4}b^{-1}} = \dfrac{a^9}{a^{-4}}\times \dfrac{b^{-1/2}}{b^{-1}}

Furthermore, for any real numbers a, b and c with a\gt0 we have:

\dfrac{a^b}{a^c}=a^{b-c}

Therefore:

\dfrac{a^9}{a^{-4}}\times \dfrac{b^{-1/2}}{b^{-1}} = a^{9-\left(-4\right)} . b^{-1/2 -\left(-1\right)} = a^{13}b^{1/2}

\dfrac{\left(a^3.b^{-1/6}\right)^3}{\left(a^{-2}.b^{-1/2}\right)^2} = a^{13} b^{1/2}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Radical functions, roots and rational exponents
  • Exercise : Determine the domain of radical functions or functions with rational exponents
  • Exercise : Determine the growth or decay of a function with a rational exponent
  • Exercise : Solve equations with radical functions
  • Exercise : Solve inequalities with radical functions
  • support@kartable.com
  • Legal notice

© Kartable 2026