01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra I
  4. Exercise : Calculate the coordinates of a transformed matrix

Calculate the coordinates of a transformed matrix Algebra I

In the following questions, find the image X' of the matrix X after a transformation whose matrix is M.

M=\begin{pmatrix} 11 & 12 \cr\cr 21 & 22 \cr\cr 31 & 32 \end{pmatrix} and X=\begin{pmatrix} 1 \cr\cr 4 \end{pmatrix}

Let M=\begin{pmatrix}m_{ij}\end{pmatrix} and X=\begin{pmatrix} x_{i1} \end{pmatrix}.

Then the image of X under the transformation whose matrix is M is:

X'=\begin{pmatrix} x'_{i1} \end{pmatrix} =M \cdot X

Thus the entries of X' are given by x'_{i1}=\sum_{a}^{b}m_{ik}x_{k1}

Here we have:

  • M=\begin{pmatrix} 11 & 12 \cr\cr 21 & 22 \cr\cr 31 & 32 \end{pmatrix}
  • X=\begin{pmatrix} 1 \cr\cr 4 \end{pmatrix}

Therefore:

X'=MX=\begin{pmatrix} 11\times1+12 \times 4 \cr 21 \times 1+ 22\times 4\cr 31\times 1+ 32\times 4\end{pmatrix}= \begin{pmatrix} 59 \cr 109 \cr 159 \end{pmatrix}

The image is X'=\begin{pmatrix} 59 \cr 109 \cr 159 \end{pmatrix}.

M=\begin{pmatrix} 5 & 7 \cr\cr 6 & 3 \cr\cr 1 & 2 \end{pmatrix} and X=\begin{pmatrix} 2 \cr\cr 3 \end{pmatrix}

Let M=\begin{pmatrix}m_{ij}\end{pmatrix} and X=\begin{pmatrix} x_{i1} \end{pmatrix}.

Then the image of X under the transformation whose matrix is M is:

X'=\begin{pmatrix} x'_{i1} \end{pmatrix} =M \cdot X

Thus the entries of X' are given by x'_{i1}=\sum_{a}^{b}m_{ik}x_{k1}

Here we have:

  • M=\begin{pmatrix} 5 & 7 \cr\cr 6 & 3 \cr\cr 1 & 2 \end{pmatrix}
  • X=\begin{pmatrix} 2 \cr\cr 3 \end{pmatrix}

Therefore:

X'=MX=\begin{pmatrix} 5\times2+7 \times 3 \cr 6 \times 2+3\times 3\cr 1\times 2+ 2\times 3\end{pmatrix}= \begin{pmatrix} 31 \cr 21 \cr 8 \end{pmatrix}

The image is X'= \begin{pmatrix} 31 \cr 21 \cr 8 \end{pmatrix}.

M=\begin{pmatrix} 2 & 5 \cr\cr 3 & 4 \end{pmatrix} and X=\begin{pmatrix} 1 \cr\cr 2 \end{pmatrix}

Let M=\begin{pmatrix}m_{ij}\end{pmatrix} and X=\begin{pmatrix} x_{i1} \end{pmatrix}.

Then the image of X under the transformation whose matrix is M is:

X'=\begin{pmatrix} x'_{i1} \end{pmatrix} =M \cdot X

Thus the entries of X' are given by x'_{i1}=\sum_{a}^{b}m_{ik}x_{k1}

Here we have:

  • M=\begin{pmatrix} 2 & 5 \cr\cr 3 & 4 \end{pmatrix}
  • X=\begin{pmatrix} 1 \cr\cr 2 \end{pmatrix}

Therefore:

X'=MX=\begin{pmatrix} 2\times1+5 \times 2 \cr 3\times 1+ 4\times 2\end{pmatrix}= \begin{pmatrix} 12 \cr 11 \end{pmatrix}

The image is X'= \begin{pmatrix} 12 \cr 11 \end{pmatrix}.

M=\begin{pmatrix} 8 & 2 \cr\cr 1 & 3 \end{pmatrix} and X=\begin{pmatrix} 2 \cr\cr 4 \end{pmatrix}

Let M=\begin{pmatrix}m_{ij}\end{pmatrix} and X=\begin{pmatrix} x_{i1} \end{pmatrix}.

Then the image of X under the transformation whose matrix is M is:

X'=\begin{pmatrix} x'_{i1} \end{pmatrix} =M \cdot X

Thus the entries of X' are given by x'_{i1}=\sum_{a}^{b}m_{ik}x_{k1}

Here we have:

  • M=\begin{pmatrix} 8 & 2 \cr\cr 1 & 3 \end{pmatrix}
  • X=\begin{pmatrix} 2 \cr\cr 4 \end{pmatrix}

Therefore:

X'=MX=\begin{pmatrix} 8\times2+2 \times 4 \cr 1 \times 2+ 3\times 4\end{pmatrix}= \begin{pmatrix} 24 \cr 14\end{pmatrix}

The image is X'=\begin{pmatrix} 24 \cr 14\end{pmatrix}.

M=\begin{pmatrix} 1 & 1 & 2 \cr\cr 2 & 2 &1 \cr\cr 1 & 2 &2 \end{pmatrix} and X=\begin{pmatrix} 2 \cr\cr 3 \cr \cr 1\end{pmatrix}

Let M=\begin{pmatrix}m_{ij}\end{pmatrix} and X=\begin{pmatrix} x_{i1} \end{pmatrix}.

Then the image of X under the transformation whose matrix is M is:

X'=\begin{pmatrix} x'_{i1} \end{pmatrix} =M \cdot X

Thus the entries of X' are given by x'_{i1}=\sum_{a}^{b}m_{ik}x_{k1}

Here we have:

  • M=\begin{pmatrix} 1 & 1 & 2 \cr\cr 2 & 2 &1 \cr\cr 1 & 2 &2 \end{pmatrix}
  • X=\begin{pmatrix} 2 \cr\cr 3 \cr \cr 1 \end{pmatrix}

Therefore:

X'=MX=\begin{pmatrix} 1\times2+1 \times 3+2\times 1 \cr 2 \times 2+ 2\times 3+1\times 1\cr 1\times 2+ 2\times 3 +2\times 1\end{pmatrix}= \begin{pmatrix} 7 \cr 11 \cr 10 \end{pmatrix}

The image X'=\begin{pmatrix} 7 \cr 11 \cr 10 \end{pmatrix}.

M=\begin{pmatrix} -2 & 9 \cr\cr 12 & 4 \end{pmatrix} and X=\begin{pmatrix} -1 \cr\cr 3 \end{pmatrix}

Let M=\begin{pmatrix}m_{ij}\end{pmatrix} and X=\begin{pmatrix} x_{i1} \end{pmatrix}.

Then the image of X under the transformation whose matrix is M is:

X'=\begin{pmatrix} x'_{i1} \end{pmatrix} =M \cdot X

Thus the entries of X' are given by x'_{i1}=\sum_{a}^{b}m_{ik}x_{k1}

Here we have:

  • M=\begin{pmatrix} -2 & 9 \cr\cr 12 & 4 \end{pmatrix}
  • X=\begin{pmatrix} -1 \cr\cr 3 \end{pmatrix}

Therefore:

X'=MX=\begin{pmatrix} -2\times-1+9 \times 3 \cr 12 \times -1+ 4\times 3\end{pmatrix}= \begin{pmatrix} 29 \cr 0 \end{pmatrix}

The image X'=\begin{pmatrix} 29 \cr 0 \end{pmatrix}.

M=\begin{pmatrix} 1 & 2 \cr\cr 2 & 1 \cr\cr 1 & 3 \end{pmatrix} and X=\begin{pmatrix} -2 \cr\cr -2 \end{pmatrix}

Let M=\begin{pmatrix}m_{ij}\end{pmatrix} and X=\begin{pmatrix} x_{i1} \end{pmatrix}.

Then the image of X under the transformation whose matrix is M is:

X'=\begin{pmatrix} x'_{i1} \end{pmatrix} =M \cdot X

Thus the entries of X' are given by x'_{i1}=\sum_{a}^{b}m_{ik}x_{k1}

Here we have:

  • M=\begin{pmatrix} 1 & 2 \cr\cr 2 & 1 \cr\cr 1 & 3 \end{pmatrix}
  • X=\begin{pmatrix} -2 \cr\cr -2 \end{pmatrix}

Therefore:

X'=MX=\begin{pmatrix} 1\times-2+2 \times -2 \cr 2 \times -2+ 1\times -2\cr 1\times -2+ 3\times -2\end{pmatrix}= \begin{pmatrix} -6 \cr -6 \cr -8 \end{pmatrix}

The image is X'=\begin{pmatrix} -6 \cr -6 \cr -8 \end{pmatrix}.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Introduction to matrices
  • Exercise : Calculate expressions of the form c.A+B
  • Exercise : Multiply two matrices
  • Exercise : Find the matrix that represents a certain transformation
  • Exercise : Find the vertex matrix of a graph
  • Exercise : Write a graph from its vertex matrix
  • support@kartable.com
  • Legal notice

© Kartable 2026