01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra I
  4. Exercise : Find the matrix that represents a certain transformation

Find the matrix that represents a certain transformation Algebra I

What is the transformation matrix that represents a counterclockwise rotation of 90^\circ through the origin?

We know that the following matrix is the counterclockwise rotation of an angle \theta through the origin.

\begin{pmatrix} \cos \theta & -\sin\theta \cr\cr \sin\theta & \cos\theta \end{pmatrix}

Hence for \theta = 90^\circ the matrix is

\begin{pmatrix} \cos 90^\circ & -\sin 90^\circ \cr\cr\sin 90^\circ &\cos 90^\circ \end{pmatrix} = \begin{pmatrix} 0 & -1 \cr\cr 1 & 0 \end{pmatrix}

The matrix is \begin{pmatrix} 0 & -1 \cr\cr 1 & 0 \end{pmatrix}.

What is the transformation matrix that represents a clockwise rotation of 45^\circ through the origin?

We know that the following matrix is the counterclockwise rotation of an angle \theta through the origin.

\begin{pmatrix} \cos \theta & -\sin\theta \cr\cr \sin\theta & \cos\theta \end{pmatrix}

Since a clockwise rotation of 45^\circ is needed, we can conclude that \theta = -45^\circ. Therefore, the matrix is:

\begin{pmatrix} \cos -45^\circ & -\sin -45^\circ \cr\cr\sin -45^\circ &\cos -45^\circ \end{pmatrix} = \begin{pmatrix} \dfrac{\sqrt{2}}{2}& \dfrac{\sqrt{2}}{2} \cr\cr -\dfrac{\sqrt{2}}{2} & \dfrac{\sqrt{2}}{2} \end{pmatrix}

The matrix is \begin{pmatrix} \dfrac{\sqrt{2}}{2}& \dfrac{\sqrt{2}}{2} \cr\cr -\dfrac{\sqrt{2}}{2} & \dfrac{\sqrt{2}}{2} \end{pmatrix}.

What is the transformation matrix that represents a clockwise rotation of 360^\circ through the origin?

A rotation of 360 degrees is a full rotation, which means turning the object around until it is in the same place and the same direction. This rotation makes no changes.

Thus the matrix that represents this transformation is the identity matrix.

The matrix is \begin{pmatrix} 1&0 \cr\cr 0 & 1 \end{pmatrix}.

What is the transformation matrix that represents a reflection through the origin?

We know that the following matrix is the counterclockwise rotation of an angle \theta through the origin.

\begin{pmatrix} \cos \theta & -\sin\theta \cr\cr \sin\theta & \cos\theta \end{pmatrix}

A reflection over the origin is a rotation of 180^\circ and we can write:

\begin{pmatrix} \cos 180^\circ & -\sin 180^\circ \cr\cr\sin 180^\circ &\cos 180^\circ \end{pmatrix} = \begin{pmatrix} -1 & 0 \cr\cr 0 & -1 \end{pmatrix}.

The matrix is \begin{pmatrix} -1& 0 \cr\cr 0 & -1 \end{pmatrix}.

What is the transformation matrix that represents a reflection through the x -axis?

Assume that the following matrix represents the reflection through the x -axis.

\begin{pmatrix}a & b \cr\cr c & d \end{pmatrix}

Since a reflection through the x -axis changes \left(x,y\right) to \left(x,-y\right), we have:

\begin{pmatrix}a & b \cr\cr c & d \end{pmatrix} \begin{pmatrix} x \cr\cr y \end{pmatrix} = \begin{pmatrix} x \cr\cr -y \end{pmatrix}

Therefore:

\begin{pmatrix} ax+by \cr\cr cx+dy \end{pmatrix} = \begin{pmatrix} x \cr\cr -y \end{pmatrix}

Equivalently:

\begin{cases} ax+by=x \cr \cr cx+dy=-y \end{cases}

One obvious solution for this system is:

\begin{cases} a=1 \cr \cr b=0 \cr \cr c=0 \cr \cr d=-1 \end{cases}

Thus the matrix of this transformation is:

\begin{pmatrix}1 & 0 \cr\cr 0 & -1 \end{pmatrix}

The matrix is \begin{pmatrix} 1 & 0 \cr\cr 0 & -1 \end{pmatrix}.

What is the transformation matrix that represents a reflection through the y -axis?

Assume that the following matrix represents the reflection through the y -axis.

\begin{pmatrix}a & b \cr\cr c & d \end{pmatrix}

Since a reflection through the x -axis changes \left(x,y\right) to \left(-x,y\right) we have:

\begin{pmatrix}a & b \cr\cr c & d \end{pmatrix} \begin{pmatrix} x \cr\cr y \end{pmatrix} = \begin{pmatrix} -x \cr\cr y \end{pmatrix}

Therefore:

\begin{pmatrix} ax+by \cr\cr cx+dy \end{pmatrix} = \begin{pmatrix} -x \cr\cr y \end{pmatrix}

Equivalently:

\begin{cases} ax+by=-x \cr \cr cx+dy=y \end{cases}

One obvious solution for this system is:

\begin{cases} a=-1 \cr \cr b=0 \cr \cr c=0 \cr \cr d=1 \end{cases}

Thus the matrix of this transformation is:

\begin{pmatrix}-1 & 0 \cr\cr 0 & 1 \end{pmatrix}

The matrix is \begin{pmatrix} -1 & 0 \cr\cr 0 & 1 \end{pmatrix}.

What is the transformation matrix that represents a reflection through the line y=x

Assume that the following matrix represents the reflection through y=x.

\begin{pmatrix}a & b \cr\cr c & d \end{pmatrix}

Since a reflection through y=x changes \left(x,y\right) to \left(y,x\right) we have:

\begin{pmatrix}a & b \cr\cr c & d \end{pmatrix} \begin{pmatrix} x \cr\cr y \end{pmatrix} = \begin{pmatrix} y \cr\cr x \end{pmatrix}

Therefore:

\begin{pmatrix} ax+by \cr\cr cx+dy \end{pmatrix} = \begin{pmatrix} y \cr\cr x \end{pmatrix}

Equivalently:

\begin{cases} ax+by=y \cr \cr cx+dy=x \end{cases}

One obvious solution for this system is:

\begin{cases} a=0 \cr \cr b=1 \cr \cr c=1 \cr \cr d=0 \end{cases}

So the matrix of this transformation is:

\begin{pmatrix}0 & 1 \cr\cr 1 & 0 \end{pmatrix}

The matrix is \begin{pmatrix}0 & 1 \cr\cr 1 & 0 \end{pmatrix}.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Introduction to matrices
  • Exercise : Calculate expressions of the form c.A+B
  • Exercise : Multiply two matrices
  • Exercise : Calculate the coordinates of a transformed matrix
  • Exercise : Find the vertex matrix of a graph
  • Exercise : Write a graph from its vertex matrix
  • support@kartable.com
  • Legal notice

© Kartable 2026