01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra I
  4. Exercise : Multiply two matrices

Multiply two matrices Algebra I

Calculate the following matrix products.

\begin{pmatrix} 11 & 12 & 13 \cr\cr 21 & 22 & 23 \end{pmatrix}\times\begin{pmatrix} 11 \cr\cr 21 \cr\cr 31 \end{pmatrix}

Let A=\begin{matrix}\left(a_{ij}\right)\end{matrix} be a n\times p matrix and B=\begin{matrix}\left(b_{ij}\right)\end{matrix} be a p\times m matrix. The product C=AB is a n\times m matrix with entries c_{ij}=\sum_{k=1}^{p}a_{ik}b_{kj}.

Note the number of columns in A must equal the number of rows in B to have a matrix product.

Here the product of a 2\times3 matrix with a 3\times1 matrix is a 2\times1 matrix.

We have:

\begin{pmatrix} 11 & 12 & 13 \cr\cr 21 & 22 & 23 \end{pmatrix}\times\begin{pmatrix} 11 \cr\cr 21 \cr\cr 31 \end{pmatrix}=\begin{pmatrix} 11 \times 11+12\times21+13\times31 \cr\cr 21\times 11+22 \times 21+23\times 31 \end{pmatrix}

\begin{pmatrix} 11 & 12 & 13 \cr\cr 21 & 22 & 23 \end{pmatrix}\times\begin{pmatrix} 11 \cr\cr 21 \cr\cr 31 \end{pmatrix}=\begin{pmatrix} 121+252+403\cr\cr 231+462+713 \end{pmatrix}

\begin{pmatrix} 11 & 12 & 13 \cr\cr 21 & 22 & 23 \end{pmatrix}\times\begin{pmatrix} 11 \cr\cr 21 \cr\cr 31 \end{pmatrix}=\begin{pmatrix} 776 \cr\cr 1\ 406 \end{pmatrix}

\begin {pmatrix} 1 & 3& 2 \cr \cr 1 & 1 & 5 \end {pmatrix} \times \begin {pmatrix} 2 \cr \cr 2 \cr \cr 3 \end {pmatrix}

Let A=\begin{matrix}\left(a_{ij}\right)\end{matrix} be a n\times p matrix and B=\begin{matrix}\left(b_{ij}\right)\end{matrix} be a p\times m matrix. The product C=AB is a n\times m matrix with entries c_{ij}=\sum_{k=1}^{p}a_{ik}b_{kj}.

Note the number of columns in A must equal the number of rows in B to have a matrix product.

Here the product of a 2\times3 matrix with a 3\times1 matrix is a 2\times1 matrix.

We have:

\begin {pmatrix} 1 & 3& 2 \cr \cr 1 & 1 & 5 \end {pmatrix} \times \begin {pmatrix} 2 \cr \cr 2 \cr \cr 3 \end {pmatrix}=\begin{pmatrix} 1 \times 2+3\times2+2\times3 \cr\cr 1\times 2+1 \times 2+5\times 3 \end{pmatrix}

\begin {pmatrix} 1 & 3& 2 \cr \cr 1 & 1 & 5 \end {pmatrix} \times \begin {pmatrix} 2 \cr \cr 2 \cr \cr 3 \end {pmatrix}=\begin{pmatrix} 14\cr\cr 19 \end{pmatrix}

\begin {pmatrix} 1 & 3& 2 \cr \cr 1 & 1 & 5 \end {pmatrix} \times \begin {pmatrix} 2 \cr \cr 2 \cr \cr 3 \end {pmatrix}=\begin{pmatrix} 14\cr\cr 19 \end{pmatrix}

\begin {pmatrix} 5& 4& 1 \cr \cr 7 & 2 & 1 \end {pmatrix} \times \begin {pmatrix} 1 \cr \cr 2 \cr \cr 1 \end {pmatrix}

Let A=\begin{matrix}\left(a_{ij}\right)\end{matrix} be a n\times p matrix and B=\begin{matrix}\left(b_{ij}\right)\end{matrix} be a p\times m matrix. The product C=AB is a n\times m matrix with entries c_{ij}=\sum_{k=1}^{p}a_{ik}b_{kj}.

Note the number of columns in A must equal the number of rows in B to have a matrix product.

Here the product of a 2\times3 matrix with a 3\times1 matrix is a 2\times1 matrix.

We have:

\begin {pmatrix} 5& 4& 1 \cr \cr 7 & 2 & 1 \end {pmatrix} \times \begin {pmatrix} 1 \cr \cr 2 \cr \cr 1 \end {pmatrix}=\begin{pmatrix} 5\times 1+4\times2+1 \times 1 \cr\cr 7\times1+2\times2+1\times1 \end{pmatrix}

\begin {pmatrix} 5& 4& 1 \cr \cr 7 & 2 & 1 \end {pmatrix} \times \begin {pmatrix} 1 \cr \cr 2 \cr \cr 1 \end {pmatrix}=\begin{pmatrix} 14\cr 12\end{pmatrix}

\begin {pmatrix} 5& 4& 1 \cr \cr 7 & 2 & 1 \end {pmatrix} \times \begin {pmatrix} 1 \cr \cr 2 \cr \cr 1 \end {pmatrix}=\begin{pmatrix} 14\cr 12\end{pmatrix}

\begin{pmatrix} 2 & 5 \cr 1 & 6\end{pmatrix}\times \begin{pmatrix} 6 \cr 3 \end{pmatrix}

Let A=\begin{matrix}\left(a_{ij}\right)\end{matrix} be a n\times p matrix and B=\begin{matrix}\left(b_{ij}\right)\end{matrix} be a p\times m matrix. The product C=AB is a n\times m matrix with entries c_{ij}=\sum_{k=1}^{p}a_{ik}b_{kj}.

Note the number of columns in A must equal the number of rows in B to have a matrix product.

Here the product of a 2\times2 matrix with a 2\times1 matrix is a 2\times1 matrix.

We have:

\begin{pmatrix} 2 & 5 \cr 1 & 6\end{pmatrix}\times \begin{pmatrix} 6 \cr 3 \end{pmatrix}=\begin{pmatrix} 2\times 6+5\times 3 \cr 1 \times 6 +6 \times 3\end{pmatrix}

\begin{pmatrix} 2 & 5 \cr 1 & 6\end{pmatrix}\times \begin{pmatrix} 6 \cr 3 \end{pmatrix}=\begin{pmatrix} 27 \cr 24\end{pmatrix}

\begin{pmatrix} 2 & 5 \cr 1 & 6\end{pmatrix}\times \begin{pmatrix} 6 \cr 3 \end{pmatrix}=\begin{pmatrix} 27 \cr 24\end{pmatrix}

\begin{pmatrix} 1 & 4 \cr 2 & 7\end{pmatrix}\times \begin{pmatrix} 3 & 2 \cr 3 & 1 \end{pmatrix}

Let A=\begin{matrix}\left(a_{ij}\right)\end{matrix} be a n\times p matrix and B=\begin{matrix}\left(b_{ij}\right)\end{matrix} be a p\times m matrix. The product C=AB is a n\times m matrix with entries c_{ij}=\sum_{k=1}^{p}a_{ik}b_{kj}.

Note the number of columns in A must equal the number of rows in B to have a matrix product.

Here the product of a 2\times2 matrix with a 2\times2 matrix is a 2\times2 matrix.

We have:

\begin{pmatrix} 1 & 4 \cr 2 & 7\end{pmatrix}\times \begin{pmatrix} 3 & 2 \cr 3 & 1 \end{pmatrix}=\begin{pmatrix} 1\times 3+4\times3 & 1\times2+4\times1 \cr 2\times3+7\times 3 & 2\times2+7\times 1\end{pmatrix}

\begin{pmatrix} 1 & 4 \cr 2 & 7\end{pmatrix}\times \begin{pmatrix} 3 & 2 \cr 3 & 1 \end{pmatrix}=\begin{pmatrix} 15 & 6 \cr 27 & 11\end{pmatrix}

\begin{pmatrix} 1 & 4 \cr 2 & 7\end{pmatrix}\times \begin{pmatrix} 3 & 2 \cr 3 & 1 \end{pmatrix}=\begin{pmatrix} 15 & 6 \cr 27 & 11\end{pmatrix}

\begin{pmatrix} 2 & 3 \cr 4 & 1\end{pmatrix}\times \begin{pmatrix} 1 & 4 \cr -1 & -2 \end{pmatrix}

Let A=\begin{matrix}\left(a_{ij}\right)\end{matrix} be a n\times p matrix and B=\begin{matrix}\left(b_{ij}\right)\end{matrix} be a p\times m matrix. The product C=AB is a n\times m matrix with entries c_{ij}=\sum_{k=1}^{p}a_{ik}b_{kj}.

Note the number of columns in A must equal the number of rows in B to have a matrix product.

Here the product of a 2\times2 matrix with a 2\times2 matrix is a 2\times2 matrix.

We have:

\begin{pmatrix} 2 & 3 \cr 4 & 1\end{pmatrix}\times \begin{pmatrix} 1 & 4 \cr -1 & -2 \end{pmatrix}=\begin{pmatrix} 2\times 1+3\times -1 & 2\times 4+3\times -2 \cr 4\times 1+1\times -1 & 4\times 4+1\times -2\end{pmatrix}

\begin{pmatrix} 2 & 3 \cr 4 & 1\end{pmatrix}\times \begin{pmatrix} 1 & 4 \cr -1 & -2 \end{pmatrix}=\begin{pmatrix} -1 & 2 \cr 3 & 14\end{pmatrix}

\begin{pmatrix} 2 & 3 \cr 4 & 1\end{pmatrix}\times \begin{pmatrix} 1 & 4 \cr -1 & -2 \end{pmatrix}=\begin{pmatrix} -1 & 2 \cr 3 & 14\end{pmatrix}

\begin{pmatrix} 1 & 2 \cr 7 & 11\end{pmatrix}\times \begin{pmatrix} 11 & -4 \cr -1 & 2 \end{pmatrix}

Let A=\begin{matrix}\left(a_{ij}\right)\end{matrix} be a n\times p matrix and B=\begin{matrix}\left(b_{ij}\right)\end{matrix} be a p\times m matrix. The product C=AB is a n\times m matrix with entries c_{ij}=\sum_{k=1}^{p}a_{ik}b_{kj}.

Note the number of columns in A must equal the number of rows in B to have a matrix product.

Here the product of a 2\times2 matrix with a 2\times2 matrix is a 2\times2 matrix.

We have:

\begin{pmatrix} 1 & 2 \cr 7 & 11\end{pmatrix}\times \begin{pmatrix} 11 & -4 \cr -1 & 2 \end{pmatrix}=\begin{pmatrix} 1\times 11+2\times -1 & 1\times -4+2\times 2 \cr 7\times 11+11\times -1 & 7\times -4+11\times 2\end{pmatrix}

\begin{pmatrix} 1 & 2 \cr 7 & 11\end{pmatrix}\times \begin{pmatrix} 11 & -4 \cr -1 & 2 \end{pmatrix}=\begin{pmatrix} 9 & 0 \cr 66 & -6\end{pmatrix}

\begin{pmatrix} 1 & 2 \cr 7 & 11\end{pmatrix}\times \begin{pmatrix} 11 & -4 \cr -1 & 2 \end{pmatrix}=\begin{pmatrix} 9 & 0 \cr 66 & -6\end{pmatrix}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Introduction to matrices
  • Exercise : Calculate expressions of the form c.A+B
  • Exercise : Calculate the coordinates of a transformed matrix
  • Exercise : Find the matrix that represents a certain transformation
  • Exercise : Find the vertex matrix of a graph
  • Exercise : Write a graph from its vertex matrix
  • support@kartable.com
  • Legal notice

© Kartable 2026