01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra II
  4. Exercise : Convert a system of equations into an augmented matrix

Convert a system of equations into an augmented matrix Algebra II

Determine the augmented matrix associated with the following systems of linear equations.

\begin{cases} 2x-y=4 \cr \cr 4x+2y=3 \end{cases}

In order to convert a system of linear equations into an augmented matrix, we take the coefficients of the system and place them in a matrix.

Here we have:

\begin{cases} 2x-y=4 \cr \cr 4x+2y=3 \end{cases}

The coefficients are:

\begin{cases} \textcolor{Red}{2}x-\textcolor{Red}{1}y=\textcolor{Red}{4} \cr \cr \textcolor{Red}{4x}+\textcolor{Red}{2}y=\textcolor{Red}{3}\end{cases}

The augmented matrix associated with this system is \begin{pmatrix} 2 & -1 & 4 \cr\cr 4 & 2 & 3 \end{pmatrix}.

\begin{cases} 4x+2y=7 \cr \cr 2x+y=5 \end{cases}

In order to convert a system of linear equations into an augmented matrix, we take the coefficients of the system and place them in a matrix.

Here we have:

\begin{cases} 4x+2y=7 \cr \cr 2x+y=5 \end{cases}

The coefficients are:

\begin{cases} \textcolor{Red}{4}x+\textcolor{Red}{2}y=\textcolor{Red}{7} \cr \cr \textcolor{Red}{2x}+\textcolor{Red}{1}y=\textcolor{Red}{5}\end{cases}

The augmented matrix associated with this system is \begin{pmatrix} 4 & 2 & 7 \cr\cr 2 & 1 & 5 \end{pmatrix}.

\begin{cases} 3x-2y=2 \cr \cr x+3y=-3 \end{cases}

In order to convert a system of linear equations into an augmented matrix, we take the coefficients of the system and place them in a matrix.

Here we have:

\begin{cases} 3x-2y=2 \cr \cr x+3y=-3 \end{cases}

The coefficients are:

\begin{cases} \textcolor{Red}{3}x+\left(\textcolor{Red}{-2}y\right)=\textcolor{Red}{2} \cr \cr \textcolor{Red}{1x}+\textcolor{Red}{3}y=\textcolor{Red}{-3}\end{cases}

The augmented matrix associated with this system is \begin{pmatrix} 3 & -2 & 2 \cr\cr 1 & 3 & -3 \end{pmatrix}.

\begin{cases} 5x-2y=-1 \cr \cr 4x+6y=-1 \end{cases}

In order to convert a system of linear equations into an augmented matrix, we take the coefficients of the system and place them in a matrix.

Here we have:

\begin{cases} 5x-2y=-1 \cr \cr 4x+6y=-1 \end{cases}

The coefficients are:

\begin{cases} \textcolor{Red}{5}x+\left(\textcolor{Red}{-2}y\right)=\textcolor{Red}{-1} \cr \cr \textcolor{Red}{4x}+\textcolor{Red}{6}y=\textcolor{Red}{-1}\end{cases}

The augmented matrix associated with this system is \begin{pmatrix} 5 & -2 & -1 \cr\cr 4 & 6 & -1 \end{pmatrix}.

\begin{cases} -1x-y=-4 \cr \cr -4x+5y=-9 \end{cases}

In order to convert a system of linear equations into an augmented matrix, we take the coefficients of the system and place them in a matrix.

Here we have:

\begin{cases} -1x-y=-4 \cr \cr -4x+5y=-9 \end{cases}

The coefficients are:

\begin{cases} \textcolor{Red}{-1}x+\left(\textcolor{Red}{-1}y\right)=\textcolor{Red}{-4} \cr \cr \textcolor{Red}{-4x}+\textcolor{Red}{5}y=\textcolor{Red}{-9}\end{cases}

The augmented matrix associated with this system is \begin{pmatrix} -1 & -1 & -4 \cr\cr -4 & 5 & -9 \end{pmatrix}.

\begin{cases} 2x=-4 \cr \cr -2y=9 \end{cases}

In order to convert a system of linear equations into an augmented matrix, we take the coefficients of the system and place them in a matrix.

Here we have:

\begin{cases} 2x=-4 \cr \cr -2y=9 \end{cases}

The coefficients are:

\begin{cases} \textcolor{Red}{2}x+\textcolor{Red}{0}y=\textcolor{Red}{-4} \cr \cr \textcolor{Red}{0x}+\left(\textcolor{Red}{-2}y\right)=\textcolor{Red}{9}\end{cases}

The augmented matrix associated with this system is \begin{pmatrix} 2 & 0 & -4 \cr\cr 0 & -2 & 9 \end{pmatrix}.

\begin{cases} 21x-12y=43 \cr \cr 14x+42y=23 \end{cases}

In order to convert a system of linear equations into an augmented matrix, we take the coefficients of the system and place them in a matrix.

Here we have:

\begin{cases} 21x-12y=43 \cr \cr 14x+42y=23 \end{cases}

The coefficients are:

\begin{cases} \textcolor{Red}{21}x+\left(\textcolor{Red}{-12}y\right)=\textcolor{Red}{43} \cr \cr \textcolor{Red}{14x}+\textcolor{Red}{42}y=\textcolor{Red}2{3}\end{cases}

The augmented matrix associated with this system is \begin{pmatrix} 21 & -12 & 43 \cr\cr 14 & 42 & 23 \end{pmatrix}.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Matrices: invertibility and matrix equations
  • Exercise : Determine if a 2x2 matrix is invertible and find its inverse if it exists
  • Exercise : Solve a system of linear equations using augmented matrix
  • support@kartable.com
  • Legal notice

© Kartable 2026