Determine whether or not the following matrixes are invertible, and find their inverse if it exists.
A=\begin{pmatrix} 8 & 3 \cr\cr 4 & 2 \end{pmatrix}
Let A be a matrix such that:
A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}
Then A is invertible if:
det \left(A\right) = a_ {11} a_ {22} -a_ {12} a_ {21} \neq 0
And if A is invertible its inverse is:
A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}
Here, we have:
A=\begin {pmatrix} 8 & 3 \cr \cr 4 & 2 \end {pmatrix}
Let's compute:
a_{11}a_{22}-a_{12}a_{21} = 8 \times 2 -3 \times 4 = 4
a_{11}a_{22}-a_{12}a_{21} \neq 0
Then A is invertible. We can determine its inverse matrix:
A^{-1}=\dfrac{1}{4} \begin {pmatrix} 2 & -3 \cr \cr -4 & 8 \end {pmatrix}
A^{- 1} = \begin {pmatrix} \dfrac{1}{2} & \dfrac{-3}{4} \cr \cr -1 & 2 \end {pmatrix}
A is invertible and its inverse is A^{-1}=\begin {pmatrix} \dfrac {1} {2} & \dfrac {-3} {4} \cr \cr -1 & 2 \end {pmatrix}.
A = \begin {pmatrix} 4 & 8 \cr \cr 1 & 2 \end {pmatrix}
Let A be a matrix such that:
A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}
Then A is invertible if:
a_{11}a_{22}-a_{12}a_{21} \neq 0
And if A is invertible its inverse is:
A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}
Here, we have:
A = \begin {pmatrix} 4 & 8 \cr \cr 1 & 2 \end {pmatrix}
Let's compute:
a_ {11} a_ {22} -a_ {12} a_ {21} = 8-8=0
A is not invertible.
A = \begin {pmatrix} 2 & 1 \cr \cr 3 & 2 \end {pmatrix}
Let A be a matrix such that:
A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}
Then A is invertible if:
det \left(A\right) = a_ {11} a_ {22} -a_ {12} a_ {21} \neq 0
And if A is invertible its inverse is:
A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}
Here, we have:
A = \begin {pmatrix} 2 & 1 \cr \cr 3 & 2 \end {pmatrix}
det\left(A\right)=2\times 2-3 \times 1=1
Therefore A is invertible and the inverse is given by:
A^{-1} = \begin {pmatrix} 2 & -1 \cr \cr -3 & 2 \end {pmatrix}
A is invertible and the inverse is A^{- 1} = \begin {pmatrix} 2 & -1 \cr \cr -3 & 2 \end {pmatrix}
A = \begin {pmatrix} 4 & -6 \cr \cr -2 & 3 \end {pmatrix}
Let A be a matrix such that:
A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}
Then A is invertible if:
a_{11}a_{22}-a_{12}a_{21} \neq 0
And if A is invertible its inverse is:
A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}
Here we have :
A = \begin {pmatrix} 4 & -6 \cr \cr -2 & 3 \end {pmatrix}
Let's compute :
a_ {11} a_ {22} -a_ {12} a_ {21} = 12-12 = 0
A is not invertible.
A = \begin {pmatrix} 1& 2 \cr \cr -3 & -4 \end {pmatrix}
Let A be a matrix such that:
A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}
Then A is invertible if:
det \left(A\right) = a_ {11} a_ {22} -a_ {12} a_ {21} \neq 0
And if A is invertible its inverse is:
A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}
Here, we have:
A = \begin {pmatrix} 1& 2 \cr \cr -3 & -4 \end {pmatrix}
Let's compute:
a_ {11} a_ {22} -a_ {12} a_ {21} = 1 \times -4 -3 \times 2 = 2
a_{11}a_{22}-a_{12}a_{21} \neq 0
Then A is invertible. We can determine its inverse matrix:
A^{-1} =\dfrac{1}{2} \begin {pmatrix} -4 & -2 \cr \cr 3 & 1 \end {pmatrix}
A^{-1}= \begin {pmatrix} -2 & -1 \cr \cr \dfrac {3} {2} & \dfrac {1} {2} \end {pmatrix}
A is invertible and the inverse is A^{-1}= \begin {pmatrix} -2 & -1 \cr \cr \dfrac {3} {2} & \dfrac {1} {2} \end {pmatrix}
A = \begin {pmatrix} 2 & 3 \cr \cr 3 & 5 \end {pmatrix}
Let A be a matrix such that:
A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}
Then A is invertible if:
det \left(A\right) = a_ {11} a_ {22} -a_ {12} a_ {21} \neq 0
And if A is invertible its inverse is:
A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}
Here, we have:
A = \begin {pmatrix} 2 & 3 \cr \cr 3 & 5 \end {pmatrix}
Let's compute:
a_ {11} a_ {22} -a_ {12} a_ {21} = 2 \times 5 -3 \times 3 = 1
a_{11}a_{22}-a_{12}a_{21} \neq 0
Then A is invertible. We can determine its inverse matrix:
A^{-1} =\begin {pmatrix} 5 & -3 \cr \cr -3 & 2 \end {pmatrix}
A is invertible and the inverse is A^{-1} =\begin {pmatrix} 5 & -3 \cr \cr -3 & 2 \end {pmatrix}
A=\begin{pmatrix} 8 & 2 \cr\cr 12 & 3 \end{pmatrix}
Let A be a matrix such that:
A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}
Then A is invertible if:
a_{11}a_{22}-a_{12}a_{21} \neq 0
And if A is invertible its inverse is:
A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}
Here we have:
A=\begin{pmatrix} 8 & 2 \cr\cr 12 & 3 \end{pmatrix}
Let's compute :
a_ {11} a_ {22} -a_ {12} a_ {21} = 24-24 = 0
A is not invertible.