01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra II
  4. Exercise : Determine if a 2x2 matrix is invertible and find its inverse if it exists

Determine if a 2x2 matrix is invertible and find its inverse if it exists Algebra II

Determine whether or not the following matrixes are invertible, and find their inverse if it exists.

A=\begin{pmatrix} 8 & 3 \cr\cr 4 & 2 \end{pmatrix}

Let A be a matrix such that:

A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}

Then A is invertible if:

det \left(A\right) = a_ {11} a_ {22} -a_ {12} a_ {21} \neq 0

And if A is invertible its inverse is:

A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}

Here, we have:

A=\begin {pmatrix} 8 & 3 \cr \cr 4 & 2 \end {pmatrix}

Let's compute:

a_{11}a_{22}-a_{12}a_{21} = 8 \times 2 -3 \times 4 = 4

a_{11}a_{22}-a_{12}a_{21} \neq 0

Then A is invertible. We can determine its inverse matrix:

A^{-1}=\dfrac{1}{4} \begin {pmatrix} 2 & -3 \cr \cr -4 & 8 \end {pmatrix}

A^{- 1} = \begin {pmatrix} \dfrac{1}{2} & \dfrac{-3}{4} \cr \cr -1 & 2 \end {pmatrix}

A is invertible and its inverse is A^{-1}=\begin {pmatrix} \dfrac {1} {2} & \dfrac {-3} {4} \cr \cr -1 & 2 \end {pmatrix}.

A = \begin {pmatrix} 4 & 8 \cr \cr 1 & 2 \end {pmatrix}

Let A be a matrix such that:

A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}

Then A is invertible if:

a_{11}a_{22}-a_{12}a_{21} \neq 0

And if A is invertible its inverse is:

A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}

Here, we have:

A = \begin {pmatrix} 4 & 8 \cr \cr 1 & 2 \end {pmatrix}

Let's compute:

a_ {11} a_ {22} -a_ {12} a_ {21} = 8-8=0

A is not invertible.

A = \begin {pmatrix} 2 & 1 \cr \cr 3 & 2 \end {pmatrix}

Let A be a matrix such that:

A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}

Then A is invertible if:

det \left(A\right) = a_ {11} a_ {22} -a_ {12} a_ {21} \neq 0

And if A is invertible its inverse is:

A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}

Here, we have:

A = \begin {pmatrix} 2 & 1 \cr \cr 3 & 2 \end {pmatrix}

det\left(A\right)=2\times 2-3 \times 1=1

Therefore A is invertible and the inverse is given by:

A^{-1} = \begin {pmatrix} 2 & -1 \cr \cr -3 & 2 \end {pmatrix}

A is invertible and the inverse is A^{- 1} = \begin {pmatrix} 2 & -1 \cr \cr -3 & 2 \end {pmatrix}

A = \begin {pmatrix} 4 & -6 \cr \cr -2 & 3 \end {pmatrix}

Let A be a matrix such that:

A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}

Then A is invertible if:

a_{11}a_{22}-a_{12}a_{21} \neq 0

And if A is invertible its inverse is:

A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}

Here we have :

A = \begin {pmatrix} 4 & -6 \cr \cr -2 & 3 \end {pmatrix}

Let's compute :

a_ {11} a_ {22} -a_ {12} a_ {21} = 12-12 = 0

A is not invertible.

A = \begin {pmatrix} 1& 2 \cr \cr -3 & -4 \end {pmatrix}

Let A be a matrix such that:

A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}

Then A is invertible if:

det \left(A\right) = a_ {11} a_ {22} -a_ {12} a_ {21} \neq 0

And if A is invertible its inverse is:

A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}

Here, we have:

A = \begin {pmatrix} 1& 2 \cr \cr -3 & -4 \end {pmatrix}

Let's compute:

a_ {11} a_ {22} -a_ {12} a_ {21} = 1 \times -4 -3 \times 2 = 2

a_{11}a_{22}-a_{12}a_{21} \neq 0

Then A is invertible. We can determine its inverse matrix:

A^{-1} =\dfrac{1}{2} \begin {pmatrix} -4 & -2 \cr \cr 3 & 1 \end {pmatrix}

A^{-1}= \begin {pmatrix} -2 & -1 \cr \cr \dfrac {3} {2} & \dfrac {1} {2} \end {pmatrix}

A is invertible and the inverse is A^{-1}= \begin {pmatrix} -2 & -1 \cr \cr \dfrac {3} {2} & \dfrac {1} {2} \end {pmatrix}

A = \begin {pmatrix} 2 & 3 \cr \cr 3 & 5 \end {pmatrix}

Let A be a matrix such that:

A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}

Then A is invertible if:

det \left(A\right) = a_ {11} a_ {22} -a_ {12} a_ {21} \neq 0

And if A is invertible its inverse is:

A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}

Here, we have:

A = \begin {pmatrix} 2 & 3 \cr \cr 3 & 5 \end {pmatrix}

Let's compute:

a_ {11} a_ {22} -a_ {12} a_ {21} = 2 \times 5 -3 \times 3 = 1

a_{11}a_{22}-a_{12}a_{21} \neq 0

Then A is invertible. We can determine its inverse matrix:

A^{-1} =\begin {pmatrix} 5 & -3 \cr \cr -3 & 2 \end {pmatrix}

A is invertible and the inverse is A^{-1} =\begin {pmatrix} 5 & -3 \cr \cr -3 & 2 \end {pmatrix}

A=\begin{pmatrix} 8 & 2 \cr\cr 12 & 3 \end{pmatrix}

Let A be a matrix such that:

A=\begin {pmatrix} a_{11} & a_{12} \cr \cr a_{21} & a_{22} \end {pmatrix}

Then A is invertible if:

a_{11}a_{22}-a_{12}a_{21} \neq 0

And if A is invertible its inverse is:

A^{- 1} = \dfrac{1}{det\left(A\right)} \begin {pmatrix} a_ {22} & -a_ {12} \cr \ -a_ {21} & a_ {11} \end {pmatrix}

Here we have:

A=\begin{pmatrix} 8 & 2 \cr\cr 12 & 3 \end{pmatrix}

Let's compute :

a_ {11} a_ {22} -a_ {12} a_ {21} = 24-24 = 0

A is not invertible.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Matrices: invertibility and matrix equations
  • Exercise : Convert a system of equations into an augmented matrix
  • Exercise : Solve a system of linear equations using augmented matrix
  • support@kartable.com
  • Legal notice

© Kartable 2026