01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra II
  4. Exercise : Solve a system of linear equations using augmented matrix

Solve a system of linear equations using augmented matrix Algebra II

Solve the following systems using augmented matrices.

\begin{cases} 2x-y=4 \cr \cr 4x+2y=3 \end{cases}

The system \begin{cases} 2x-y=4 \cr \cr 4x+2y=3 \end{cases} gives the below augmented matrix:

\begin{pmatrix} 2 & -1 & 4 \cr\cr 4 & 2 & 3 \end{pmatrix}

Adding twice the first row to the second gives:

\begin{pmatrix} 2 & -1 & 4 \cr\cr 8 & 0 &11 \end{pmatrix}

Dividing the second row by 8 gives:

\begin{pmatrix} 2 & -1 & 4 \cr\cr 1 & 0 &\dfrac{11}{8} \end{pmatrix}

Interchanging the two rows gives:

\begin{pmatrix} 1 & 0 &\dfrac{11}{8} \cr 2 & -1 & 4 \end{pmatrix}

Subtracting twice the first row from the second gives:

\begin{pmatrix} 1 & 0 &\dfrac{11}{8} \cr 0 & 1 & \dfrac{-5}{4} \end{pmatrix}

The solution appears in the matrix:

\begin{pmatrix} 1 & 0 &\textcolor{Red}{\dfrac{11}{8} }\cr 0 & 1 & \textcolor{Red}{\dfrac{-5}{4}} \end{pmatrix}

The solution is:

x=\dfrac{11}{8} and y=\dfrac{-5}{4}

\begin{cases} 4x-2y=8 \cr \cr x+2y=6 \end{cases}

The system \begin{cases} 4x-2y=8 \cr \cr x+2y=6 \end{cases} provides the augmented matrix:

\begin{pmatrix} 4 & -2 & 8 \cr\cr 1 & 2 & 6 \end{pmatrix}

Adding the first row to the second gives:

\begin{pmatrix} 4 & -2 & 8 \cr\cr 5& 0 & 14 \end{pmatrix}

Interchanging the two rows gives:

\begin{pmatrix} 5 & 0 & 14 \cr \cr 4 & -2 & 8 \end{pmatrix}

Dividing the first row by 5 gives:

\begin{pmatrix} 1 & 0 & \dfrac{14}{5} \cr \cr 4 & -2 & 8 \end{pmatrix}

Subtracting four times the first row from the second gives:

\begin{pmatrix} 1 & 0 & \dfrac{14}{5} \cr \cr 0 & -2 & - \dfrac{16}{5} \end{pmatrix}

Dividing the second row by -2. The solution appears in the matrix:

\begin{pmatrix} 1 & 0 &\textcolor{Red}{\dfrac{14}{5} }\cr 0 & 1 & \textcolor{Red}{\dfrac{8}{5}} \end{pmatrix}

The solution is x=\dfrac{14}{5} and y=\dfrac{8}{5}.

\begin{cases} 2x-6y=12 \cr \cr 4x+6y=24 \end{cases}

The system \begin{cases} 2x-6y=12 \cr \cr 4x+6y=24 \end{cases} provides the augmented matrix:

\begin{pmatrix} 2 & -6 & 12 \cr\cr 4 & 6 & 24 \end{pmatrix}

Adding the first row to the second gives:

\begin{pmatrix} 6 & 0 & 36 \cr\cr 4 & 6 & 24 \end{pmatrix}

Dividing the first row by 6 gives:

\begin{pmatrix} 1 & 0 & 6 \cr\cr 4 & 6 & 24 \end{pmatrix}

Subtracting four times the first row from the second gives:

\begin{pmatrix} 1 & 0 & 6 \cr\cr 0 & 6 & 0 \end{pmatrix}

Dividing the second row by 6 gives:

\begin{pmatrix} 1 & 0 &\textcolor{Red}{6 }\cr 0 & 1 & \textcolor{Red}{0} \end{pmatrix}

The solution is x=6 and y=0.

\begin{cases} x-y=3 \cr \cr x+y=7 \end{cases}

The system \begin{cases} x-y=3 \cr \cr x+y=7 \end{cases} provides the augmented matrix:

\begin{pmatrix} 1 & -1 & 3 \cr \cr 1 & 1 & 7 \end{pmatrix}

Adding the first row to the second gives:

\begin{pmatrix} 2 & 0 & 10 \cr \cr 1 & 1 & 7 \end{pmatrix}

Dividing the first row by 2 gives:

\begin{pmatrix} 1 & 0 & 5 \cr \cr 1 & 1 & 7 \end{pmatrix}

Subtracting the first row from the second gives:

\begin{pmatrix} 1 & 0 & 5 \cr \cr 0 & 1 & 2 \end{pmatrix}

The solution appears in the matrix:

\begin{pmatrix} 1 & 0 &\textcolor{Red}{5 }\cr 0 & 1 & \textcolor{Red}{2} \end{pmatrix}

The solution is x=5 and y=2.

\begin{cases} 5x-3y=12 \cr \cr -5x+y=10 \end{cases}

The system \begin{cases} 5x-3y=12 \cr \cr -5x+y=10 \end{cases} provides the augmented matrix:

\begin{pmatrix} 5 & -3 & 12 \cr \cr -5 & 1 & 10 \end{pmatrix}

Adding the first row to the second gives:

\begin{pmatrix} 0& -2 & 22 \cr \cr -5 & 1 & 10 \end{pmatrix}

Dividing the first row by -2 gives:

\begin{pmatrix} 0& 1 & -11 \cr \cr -5 & 1 & 10 \end{pmatrix}

Subtracting the first row from the second gives:

\begin{pmatrix} 0& 1 & -11 \cr \cr -5 & 0 & 21 \end{pmatrix}

Interchanging the two rows gives:

\begin{pmatrix} -5 & 0 & 21 \cr \cr0& 1 & -11 \end{pmatrix}

Dividing the first row by -5 gives:

\begin{pmatrix} 1 & 0 & \dfrac{-21}{5} \cr \cr0& 1 & -11 \end{pmatrix}

The solution appears in the matrix:

\begin{pmatrix} 1 & 0 &\textcolor{Red}{\dfrac{-21}{5} }\cr 0 & 1 & \textcolor{Red}{-11} \end{pmatrix}

The solution is x=\dfrac{-21}{5} and y=-11.

\begin{cases} x-2y=12 \cr \cr -x+y=8 \end{cases}

The system \begin{cases} x-2y=12 \cr \cr -x+y=8 \end{cases} provides the augmented matrix:

\begin{pmatrix} 1 & -2 & 12 \cr \cr -1 & 1 & 8 \end{pmatrix}

Adding the first row to the second gives:

\begin{pmatrix} 1 & -2 & 12 \cr \cr 0 & -1 & 20 \end{pmatrix}

Dividing the second row by -1 gives:

\begin{pmatrix} 1 & -2 & 12 \cr \cr 0 & 1 & -20 \end{pmatrix}

Adding twice the second row to the first gives:

\begin{pmatrix} 1 & 0 & -28 \cr \cr 0 & 1 & -20 \end{pmatrix}

The solution appears in the matrix:

\begin{pmatrix} 1 & 0 &\textcolor{Red}{-28 }\cr 0 & 1 & \textcolor{Red}{-20} \end{pmatrix}

The solution is x=-28 and y=-20.

\begin{cases} 3x-4y=8 \cr \cr -3x+y=10 \end{cases}

The system \begin{cases} 3x-4y=8 \cr \cr -3x+y=10 \end{cases} provides the augmented matrix:

\begin{pmatrix} 3 & -4 & 8 \cr \cr -3 & 1 & 10 \end{pmatrix}

Adding the first row to the second gives:

\begin{pmatrix} 3 & -4 & 8 \cr \cr 0 & -3 & 18 \end{pmatrix}

Dividing the second row by -3 gives:

\begin{pmatrix} 3 & -4 & 8 \cr \cr 0 & 1 & -6 \end{pmatrix}

Adding four times the second row to the first gives:

\begin{pmatrix} 3 & 0 & -16 \cr \cr 0 & 1 & -6 \end{pmatrix}

Dividing the first row by 3 gives:

\begin{pmatrix} 1 & 0 & \dfrac{-16}{3} \cr \cr 0 & 1 & -6 \end{pmatrix}

The solution appears in the matrix:

\begin{pmatrix} 1 & 0 &\textcolor{Red}{\dfrac{-16}{3} }\cr 0 & 1 & \textcolor{Red}{-6} \end{pmatrix}

The solution is x=\dfrac{-16}{3} and y=-6.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Matrices: invertibility and matrix equations
  • Exercise : Determine if a 2x2 matrix is invertible and find its inverse if it exists
  • Exercise : Convert a system of equations into an augmented matrix
  • support@kartable.com
  • Legal notice

© Kartable 2026