01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Determine the points of inflexion of a function

Determine the points of inflexion of a function Calculus

Determine the x-coordinates of the points of inflexion of the following function:

f\left(x\right)=5x^{3}-30x^{2}+25x-10

x=a is a point of inflexion for a function f if:

  • f' is differentiable in x=a
  • f''\left(a\right)=0
  • f'' changes its sign in x=a

Calculate f'\left(x\right) :

f'\left(x\right)=\left(5x^{3}-30x^{2}+25x-10\right)'=15x^{2}-60x+25

Calculate f''\left(x\right) :

f''\left(x\right)=\left(15x^{2}-60x+25\right)'=30x-60

Solve the equation f''\left(x\right)=0 :

30x-60=0

x=2

The sign of f'' is the following:

-

The point of inflexion for the function f is x=2.

Determine the x-coordinates of the points of inflexion of the following function:

f\left(x\right)=x^{2}e^{3x}

x=a is a point of inflexion for a function f if:

  • f' is differentiable in x=a
  • f''\left(a\right)=0
  • f'' changes its sign in x=a

Calculate f'\left(x\right) :

f'\left(x\right)=\left(x^{2}e^{3x}\right)'=\left(x^{2}\right)'e^{3x}+x^{2}\left(e^{3x}\right)'=2x\cdot e^{3x}+x^{2}\cdot e^{3x}\cdot3=\left(3x^{2}+2x\right)e^{3x}

Calculate f''\left(x\right) :

f''\left(x\right)=\left(\left(3x^{2}+2x\right)e^{3x}\right)'=\left(3x^{2}+2x\right)'e^{3x}+\left(3x^{2}+2x\right)\cdot\left(e^{3x}\right)'=\left(6x+2\right)e^{3x}+\left(3x^{2}+2x\right)\cdot e^{3x}\cdot3=\left(9x^{2}+12x+2\right)e^{3x}

Solve the equation f''\left(x\right)=0 :

\left(9x^{2}+12x+2\right)e^{3x}=0

e^{3x}=0 has no solution;

9x^{2}+12x+2=0 has solutions:

x_{1}=\dfrac{-2-\sqrt{2}}{3} and x_{2}=\dfrac{-2+\sqrt{2}}{3}

The sign of f'' is the following:

-

The points of inflexion for the function f are x=\dfrac{-2-\sqrt{2}}{3} and x=\dfrac{-2+\sqrt{2}}{3}.

Determine the x-coordinates of the points of inflexion of the following function:

f\left(x\right)=x^{3}-5x^{2}+7x-3

x=a is a point of inflexion for a function f if:

  • f' is differentiable in x=a
  • f''\left(a\right)=0
  • f'' changes its sign in x=a

Calculate f'\left(x\right) :

f'\left(x\right)=\left(x^{3}-5x^{2}+7x-3\right)'=3x^{2}-10x+7

Calculate f''\left(x\right) :

f''\left(x\right)=\left(3x^{2}-10x+7\right)'=6x-10

Solve the equation f''\left(x\right)=0 :

6x-10=0

x=\dfrac{5}{3}

Since the sign of f'' changes in x=\dfrac{5}{3}, we conclude that x=\dfrac{5}{3} is an inflexion point.

The points of inflexion for the function f is x=\dfrac{5}{3}.

Determine the x-coordinates of the points of inflexion of the following function:

f\left(x\right)=\ln\left(x^{2}+4x\right)

x=a is a point of inflexion for a function f if:

  • f' is differentiable in x=a
  • f''\left(a\right)=0
  • f'' changes its sign in x=a

Calculate f'\left(x\right) :

f'\left(x\right)=\left(\ln\left(x^{2}+4x\right)\right)'=\dfrac{\left(x^{2}+4x\right)'}{x^{2}+4x}=\dfrac{2x+4}{x^{2}+4x}

Calculate f''\left(x\right) :

f''\left(x\right)=\left( \dfrac{2x+4}{x^{2}+4x} \right)'=\dfrac{\left(2x+4\right)'\left(x^{2}+4x\right)-\left(2x+4\right)\left(x^{2}+4x\right)'}{\left(x^{2}+4x\right)^{2}}=\dfrac{2\left(x^{2}+4x\right)-\left(2x+4\right)\left(2x+4\right)}{\left(x^{2}+4x\right)^{2}}=\dfrac{-2x^{2}-8x-16}{\left(x^{2}+4x\right)^{2}}

Solve the equation f''\left(x\right)=0 :

\dfrac{-2x^{2}-8x-16}{\left(x^{2}+4x\right)^{2}}=0

The equation has no real solutions.

f has no inflexion points.

Determine the x-coordinates of the points of inflexion of the following function:

f\left(x\right)=\dfrac{1}{2}x^{4}+\dfrac{2}{3}x^{3}-5x+4

x=a is a point of inflexion for a function f if:

  • f' is differentiable in x=a
  • f''\left(a\right)=0
  • f'' changes its sign in x=a

Calculate f'\left(x\right) :

f'\left(x\right)=\left(\dfrac{1}{2}x^{4}+\dfrac{2}{3}x^{3}-5x+4\right)'=2x^{3}+2x^{2}-5

Calculate f''\left(x\right) :

f''\left(x\right)=\left(2x^{3}+2x^{2}-5\right)'=6x^{2}+4x

Solve the equation f''\left(x\right)=0 :

6x^{2}+4x=0

The solutions are:

x=0 and x=-\dfrac{2}{3}

The sign of f'' is the following:

-

The points of inflexion for the function f are x=0 and x=-\dfrac{2}{3}.

Determine the x-coordinates of the points of inflexion of the following function:

f\left(x\right)=x^{3}\ln\left(x\right)

x=a is a point of inflexion for a function f if:

  • f' is differentiable in x=a
  • f''\left(a\right)=0
  • f'' changes its sign in x=a

Calculate f'\left(x\right) :

f'\left(x\right)=\left(x^{3}\ln\left(x\right)\right)'=\left( x^{3} \right)'\cdot\ln\left(x\right)+\left( x^{3} \right)\cdot\left( \ln\left(x\right) \right)'=3x^{2}\ln\left(x\right)+x^{3}\cdot\dfrac{1}{x}=3x^{2}\ln\left(x\right)+x^{2}=x^{2}\left(3\ln\left(x\right)+1\right)

Calculate f''\left(x\right) :

f''\left(x\right)=\left( x^{2}\left(3\ln\left(x\right)+1\right) \right)'=\left( x^{2}\right)'\left( 3\ln\left(x\right)+1 \right)+x^{2}\left( 3\ln\left(x\right)+1 \right)'=2x\left( 3\ln\left(x\right)+1 \right)+x^{2}\cdot\dfrac{3}{x}=x\left( 6\ln\left(x\right)+5 \right)

Solve the equation f''\left(x\right)=0 for x\gt0 :

x\left( 6\ln\left(x\right)+5 \right)=0

The solution is:

x={e^{-\frac{5}{6}}}

Since f'' changes its sign in x={e^{-\frac{5}{6}}}, we conclude that x={e^{-\frac{5}{6}}} is an inflexion point.

The point of inflexion for the function f is x={e^{-\frac{5}{6}}}.

Determine the x-coordinates of the points of inflexion of the following function:

f\left(x\right)=4x^{2}-10x+\ln\left(7\right)

x=a is a point of inflexion for a function f if:

  • f' is differentiable in x=a
  • f''\left(a\right)=0
  • f'' changes its sign in x=a

Calculate f'\left(x\right) :

f'\left(x\right)=\left(4x^{2}-10x+\ln\left(7\right)\right)'=8x-10

Calculate f''\left(x\right) :

f''\left(x\right)=\left( 8x-10 \right)'=8

Solve the equation f''\left(x\right)=0 :

8=0

The equation has no solution.

The function f has no inflexion points.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Derivatives
  • Exercise : Determine the equation of a tangent at a given point from the equation of a function
  • Exercise : Determine whether a function increases or decreases using its derivative
  • Exercise : Determine whether a function is convex or concave using the second-order derivative
  • support@kartable.com
  • Legal notice

© Kartable 2026