01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Determine whether a function is convex or concave using the second-order derivative

Determine whether a function is convex or concave using the second-order derivative Calculus

Are the following functions convex or concave?

f:x\longmapsto 2x^2-4x+5

Recall that:

  • If f''\left(x\right) \gt 0 when x\in\left( a,b \right), then f is convex on the interval \left( a,b \right).
  • If f''\left(x\right) \lt 0 when x\in\left( a,b \right), then f is concave on the interval \left( a,b \right).

Here, we have:

f\left(x\right)=2x^{2}-4x+5

Calculate the derivative:

f'\left(x\right)=\left(2x^{2}-4x+5\right)'=4x-4

Calculate the second-order derivative:

f''\left(x\right)=\left(4x-4\right)'=4

For any real number x, f''\left(x\right) is positive.

f is convex on \mathbb{R}.

f:x\longmapsto x^{3}+6x^{2}-7x-2

Recall that:

  • If f''\left(x\right) \gt 0 when x\in\left( a,b \right), then f is convex on the interval \left( a,b \right).
  • If f''\left(x\right) \lt 0 when x\in\left( a,b \right), then f is concave on the interval \left( a,b \right).

Here, we have:

f\left(x\right)=x^{3}+6x^{2}-7x-2

Calculate the derivative:

f'\left(x\right)=\left(x^{3}+6x^{2}-7x-2\right)'=3x^{2}+12x-7

Calculate the second-order derivative:

f''\left(x\right)=\left(3x^{2}+12x-7\right)'=6x+12

Solve the equation f''\left(x\right)=0 :

6x+12=0

The solution of the equation is:

x=-2

-

f is concave when x\in\left(-\infty, -2\right) and convex when x\in\left(-2,\infty\right).

f:x\longmapsto x^{2}e^{x}

Recall that:

  • If f''\left(x\right) \gt 0 when x\in\left( a,b \right), then f is convex on the interval \left( a,b \right).
  • If f''\left(x\right) \lt 0 when x\in\left( a,b \right), then f is concave on the interval \left( a,b \right).

Here, we have:

f\left(x\right)=x^{2}e^{x}

Calculate the derivative:

f'\left(x\right)=\left(x^{2}e^{x}\right)'=\left(x^{2}\right)'e^{x}+x^{2}\left(e^{x}\right)'=2xe^{x}+x^{2}e^{x}=\left(x^{2}+2x\right)e^{x}

Calculate the second-order derivative:

f''\left(x\right)=\left(\left(x^{2}+2x\right)e^{x}\right)'=\left(x^{2}+2x\right)'e^{x}+\left(x^{2}+2x\right)\left(e^{x}\right)'=\left(2x+2\right)e^{x}+\left(x^{2}+2x\right)e^{x}=\left(x^{2}+4x+2\right)e^{x}

Solve the equation f''\left(x\right)=0 :

\left(x^{2}+4x+2\right)e^{x}=0

The solutions of the equation are:

x=-2-\sqrt{2} and x=-2+\sqrt{2}

-

f is concave when x\in\left(-2-\sqrt{2},-2+\sqrt{2}\right) and convex when x\in\left(-\infty,-2-\sqrt{2}\right)\cup\left(-2+\sqrt{2},\infty\right).

f:x\longmapsto x\ln\left(x\right), x\in\left(0,\infty\right)

Recall that:

  • If f''\left(x\right) \gt 0 when x\in\left( a,b \right), then f is convex on the interval \left( a,b \right).
  • If f''\left(x\right) \lt 0 when x\in\left( a,b \right), then f is concave on the interval \left( a,b \right).

Here, we have:

f\left(x\right)=x\ln\left(x\right)

Calculate the derivative:

f'\left(x\right)=\left(x\ln\left(x\right)\right)'=\left(x\right)'\ln\left(x\right)+x\left(\ln\left(x\right)\right)'=\ln\left(x\right)+x\cdot\dfrac{1}{x}=\ln\left(x\right)+1

Calculate the second-order derivative:

f''\left(x\right)=\left(\ln\left(x\right)+1\right)'=\dfrac{1}{x}

Solve the equation f''\left(x\right)=0 :

\dfrac{1}{x}=0

The equation does not have any solutions.

We can conclude that f is convex when x\in\left(0,\infty\right).

f is convex when x\in\left(0,\infty\right).

f:x\longmapsto \dfrac{x-1}{x+1}, x\in\left(-\infty,-1\right)\cup\left(-1,\infty\right)

Recall that:

  • If f''\left(x\right) \gt 0 when x\in\left( a,b \right), then f is convex on the interval \left( a,b \right).
  • If f''\left(x\right) \lt 0 when x\in\left( a,b \right), then f is concave on the interval \left( a,b \right).

Here, we have:

f\left(x\right)=\dfrac{x-1}{x+1}

Calculate the derivative:

f'\left(x\right)=\left(\dfrac{x-1}{x+1}\right)'=\dfrac{\left(x-1\right)'\left(x+1\right)-\left(x-1\right)\left(x+1\right)'}{\left(x+1\right)^{2}}=\dfrac{1\cdot\left(x+1\right)-\left(x-1\right)\cdot1}{\left(x+1\right)^{2}}=\dfrac{2}{\left(x+1\right)^{2}}

Calculate the second-order derivative:

f''\left(x\right)=\left(\dfrac{2}{\left(x+1\right)^{2}}\right)'=\dfrac{-4\left(x+1\right)}{\left(x+1\right)^{4}}=\dfrac{-4}{\left(x+1\right)^{3}}

The sign of f'' is the following:

-

f is convex when x\in\left(-\infty,-1\right) and concave when x\in\left(-1,\infty\right).

f:x\longmapsto x^{4}-3x^{2}+7

Recall that:

  • If f''\left(x\right) \gt 0 when x\in\left( a,b \right), then f is convex on the interval \left( a,b \right).
  • If f''\left(x\right) \lt 0 when x\in\left( a,b \right), then f is concave on the interval \left( a,b \right).

Here, we have:

f\left(x\right)=x^{4}-3x^{2}+7

Calculate the derivative:

f'\left(x\right)=\left(x^{4}-3x^{2}+7\right)'=4x^{3}-6x

Calculate the second-order derivative:

f''\left(x\right)=\left(4x^{3}-6x\right)'=12x^{2}-6

Solve the equation f''\left(x\right)=0 :

12x^{2}-6=0

The solutions of the equation are:

x=-\dfrac{\sqrt{2}}{2} and x=\dfrac{\sqrt{2}}{2}

The sign of f'' is the following:

x -\infty -\dfrac{\sqrt{2}}{2} \dfrac{\sqrt{2}}{2} \infty
f''\left(x\right) + + + + + + + + + + + + + + 0 - - - - - - - - - - - - 0 + + + + + + + + + + + + + + + +
-

f is convex when x\in\left(-\infty,-\dfrac{\sqrt{2}}{2}\right)\cup\left(\dfrac{\sqrt{2}}{2},\infty\right) and concave when x\in\left(-\dfrac{\sqrt{2}}{2},\dfrac{\sqrt{2}}{2}\right).

f:x\longmapsto x^{2}\sqrt{x}, x\in\left[0,\infty\right)

Recall that:

  • If f''\left(x\right) \gt 0 when x\in\left( a,b \right), then f is convex on the interval \left( a,b \right).
  • If f''\left(x\right) \lt 0 when x\in\left( a,b \right), then f is concave on the interval \left( a,b \right).

Here, we have:

f\left(x\right)=x^{2}\sqrt{x}

Calculate the derivative:

f'\left(x\right)=\left(x^{2}\sqrt{x}\right)'=\left(x^{2}\cdot x^{\frac{1}{2}}\right)'=\left(x^{\frac{5}{2}}\right)'=\dfrac{5}{2}\cdot x^{\frac{5}{2}-1}=\dfrac{5}{2}\cdot x^{\frac{3}{2}}

Calculate the second-order derivative:

f''\left(x\right)=\left(\dfrac{5}{2}\cdot x^{\frac{3}{2}}\right)'=\dfrac{5}{2}\cdot \dfrac{3}{2}\cdot x^{\frac{3}{2}-1}=\dfrac{5}{2}\cdot \dfrac{3}{2}\cdot x^{\frac{1}{2}}=\dfrac{15}{4}\sqrt{x}

Solve the equation f''\left(x\right)=0 :

\dfrac{15}{4}\sqrt{x}=0

The solution of the equation is:

x=0

We conclude that f''\left(x\right) \gt 0 when x\in\left(0,\infty\right), so f is convex when x\in\left(0,\infty\right).

f is convex when x\in\left[0,\infty\right).

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Derivatives
  • Exercise : Determine the equation of a tangent at a given point from the equation of a function
  • Exercise : Determine whether a function increases or decreases using its derivative
  • Exercise : Determine the points of inflexion of a function
  • support@kartable.com
  • Legal notice

© Kartable 2026