01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Determine whether a function increases or decreases using its derivative

Determine whether a function increases or decreases using its derivative Calculus

Let f be the function defined as follows:

f:x\longmapsto 2x^2-4x

Determine whether f is increasing or decreasing between 1 and 5.

Recall that:

  • If f'\left(x\right) \gt 0 when x\in\left( a,b \right), then f is increasing on the interval \left( a,b \right).
  • If f'\left(x\right) \lt 0 when x\in\left( a,b \right), then f is decreasing on the interval \left( a,b \right).

In our problem:

  • f\left(x\right)=2x^{2}-4x
  • The interval is \left[ 1{,}5 \right]

Calculate the derivative:

f'\left(x\right)=\left(2x^{2}-4x\right)'=4x-4

In order to find the sign of f' on the interval \left[ 1{,}5 \right], first we solve the equation f'\left(x\right)=0 :

f'\left(x\right)=0

4x-4=0

x=1

We find that for any number greater than x=1, f'\left(x\right) \gt 0.

f is increasing on \left[1{,}5\right]

Let f be the function defined as follows:

f:x\longmapsto x^{3}-4x^{2}+5x-7

Determine whether f is increasing or decreasing.

Recall that:

  • If f'\left(x\right) \gt 0 when x\in\left( a,b \right), then f is increasing on the interval \left( a,b \right).
  • If f'\left(x\right) \lt 0 when x\in\left( a,b \right), then f is decreasing on the interval \left( a,b \right).

In our problem:

f\left(x\right)=x^{3}-4x^{2}+5x-7

Calculate the derivative:

f'\left(x\right)=\left(x^{3}-4x^{2}+5x-7\right)'=3x^{2}-8x+5

In order to find the sign of f', first solve the equation f'\left(x\right)=0 :

f'\left(x\right)=0

3x^{2}-8x+5=0

\left(x-1\right)\left(3x-5\right)=0

The solutions of the equation are:

x=1 and x=\dfrac{5}{3}

The sign of the derivative is as follows:

-

f is increasing when x\in\left(-\infty,1\right)\cup\left(\dfrac{5}{3},\infty\right) and decreasing when x\in\left(1,\dfrac{5}{3}\right).

Let f be the function defined as follows:

f:x\longmapsto x^{2}\ln\left(x\right)

Determine whether f is increasing or decreasing on \left(0,\infty\right).

Recall that:

  • If f'\left(x\right) \gt 0 when x\in\left( a,b \right), then f is increasing on the interval \left( a,b \right).
  • If f'\left(x\right) \lt 0 when x\in\left( a,b \right), then f is decreasing on the interval \left( a,b \right).

In our problem:

f\left(x\right)=x^{2}\ln\left(x\right)

Calculate the derivative:

f'\left(x\right)=\left(x^{2}\ln\left(x\right)\right)'=\left(x^{2}\right)'\ln\left(x\right)+x^{2}\left(\ln\left(x\right)\right)'=2x\ln\left(x\right)+x^{2}\cdot\dfrac{1}{x}=2x\ln\left(x\right)+x=x\left(2\ln\left(x\right)+1\right)

In order to find the sign of f', first solve the equation f'\left(x\right)=0 :

f'\left(x\right)=0

x\left(2\ln\left(x\right)+1\right)=0

The solutions of the equation are:

x=0

and

2\ln\left(x\right)+1=0

\ln\left(x\right)=-\dfrac{1}{2}

x=e^{-\frac{1}{2}}

x=\dfrac{1}{\sqrt{e}}

x=\dfrac{\sqrt{e}}{e}

The sign of the derivative is as follows:

-

f is decreasing when x\in\left(0,\dfrac{\sqrt{e}}{e}\right) and increasing when x\in\left(\dfrac{\sqrt{e}}{e},\infty\right).

Let f be the function defined as follows:

f:x\longmapsto \dfrac{x^{2}}{x-1}

Determine whether f is increasing or decreasing on \left(-\infty,1\right)\cup\left(1,\infty\right).

Recall that:

  • If f'\left(x\right) \gt 0 when x\in\left( a,b \right), then f is increasing on the interval \left( a,b \right).
  • If f'\left(x\right) \lt 0 when x\in\left( a,b \right), then f is decreasing on the interval \left( a,b \right).

In our problem:

f\left(x\right)=\dfrac{x^{2}}{x-1}

Calculate the derivative:

f'\left(x\right)=\left(\dfrac{x^{2}}{x-1}\right)'=\dfrac{\left(x^{2}\right)'\left(x-1\right)-x^{2}\left(x-1\right)'}{\left(x-1\right)^{2}}=\dfrac{2x\left(x-1\right)-x^{2}}{\left(x-1\right)^{2}}=\dfrac{x^{2}-2x}{\left(x-1\right)^{2}}

In order to find the sign of f', first solve the equation f'\left(x\right)=0 :

f'\left(x\right)=0

\dfrac{x^{2}-2x}{\left(x-1\right)^{2}}=0

The solutions of the equation are:

x=0 and x=2

The sign of the derivative is as follows:

-

f is decreasing when x\in\left(0{,}1\right)\cup\left(1{,}2\right) and increasing when x\in\left(-\infty,0\right)\cup\left(2,\infty\right).

Let f be the function defined as follows:

f:x\longmapsto x^{4}e^{2x}

Determine whether f is increasing or decreasing.

Recall that:

  • If f'\left(x\right) \gt 0 when x\in\left( a,b \right), then f is increasing on the interval \left( a,b \right).
  • If f'\left(x\right) \lt 0 when x\in\left( a,b \right), then f is decreasing on the interval \left( a,b \right).

In our problem:

f\left(x\right)=x^{4}e^{2x}

Calculate the derivative:

f'\left(x\right)=\left(x^{4}e^{2x}\right)'=\left(x^{4}\right)'e^{2x}+x^{4}\left(e^{2x}\right)'=4x^{3}e^{2x}+x^{4}e^{2x}\cdot2=2x^{3}e^{2x}\left(x+2\right)

In order to find the sign of f', first solve the equation f'\left(x\right)=0 :

f'\left(x\right)=0

2x^{3}e^{2x}\left(x+2\right)=0

The solutions of the equation are:

  • x=0
  • x=-2

The sign of the derivative is as follows:

-

f is increasing when x\in\left(-\infty,-2\right)\cup\left(0,\infty\right) and decreasing when x\in\left(-2{,}0\right).

Let f be the function defined as follows:

f:x\longmapsto \sqrt{x^{2}+4x+5}

Determine whether f is increasing or decreasing.

Recall that:

  • If f'\left(x\right) \gt 0 when x\in\left( a,b \right), then f is increasing on the interval \left( a,b \right).
  • If f'\left(x\right) \lt 0 when x\in\left( a,b \right), then f is decreasing on the interval \left( a,b \right).

In our problem:

f\left(x\right)=\sqrt{x^{2}+4x+5}

Calculate the derivative:

f'\left(x\right)=\left(\sqrt{x^{2}+4x+5}\right)'=\dfrac{\left(x^{2}+4x+5\right)'}{2\sqrt{x^{2}+4x+5}}=\dfrac{2x+4}{2\sqrt{x^{2}+4x+5}}=\dfrac{x+2}{\sqrt{x^{2}+4x+5}}

In order to find the sign of f', first solve the equation f'\left(x\right)=0 :

f'\left(x\right)=0

\dfrac{x+2}{\sqrt{x^{2}+4x+5}}=0

The solution of the equation is:

x=-2

The sign of the derivative is as follows:

-

f is decreasing when x\in\left(-\infty,-2\right) and increasing when x\in\left(-2,\infty\right).

Let f be the function defined as follows:

f:x\longmapsto \dfrac{x+3}{2x-4}

Determine whether f is increasing or decreasing on \left(-\infty,2\right)\cup\left(2,\infty\right).

Recall that:

  • If f'\left(x\right) \gt 0 when x\in\left( a,b \right), then f is increasing on the interval \left( a,b \right).
  • If f'\left(x\right) \lt 0 when x\in\left( a,b \right), then f is decreasing on the interval \left( a,b \right).

In our problem:

f\left(x\right)=\dfrac{x+3}{2x-4}

Calculate the derivative:

f'\left(x\right)=\left(\dfrac{x+3}{2x-4}\right)'=\dfrac{\left(x+3\right)'\left(2x-4\right)-\left(x+3\right)\left(2x-4\right)'}{\left(x-4\right)^{2}}=\dfrac{1\cdot\left(2x-4\right)-\left(x+3\right)\cdot2}{\left(x-4\right)^{2}}=\dfrac{-10}{\left(x-4\right)^{2}}

In order to find the sign of f', first solve the equation f'\left(x\right)=0 :

f'\left(x\right)=0

\dfrac{-10}{\left(x-4\right)^{2}}=0

The equation has no solution.

We conclude that f is decreasing when x\in\left(-\infty,2\right)\cup\left(2,\infty\right).

f is decreasing when x\in\left(-\infty,2\right)\cup\left(2,\infty\right).

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Derivatives
  • Exercise : Determine the equation of a tangent at a given point from the equation of a function
  • Exercise : Determine whether a function is convex or concave using the second-order derivative
  • Exercise : Determine the points of inflexion of a function
  • support@kartable.com
  • Legal notice

© Kartable 2026