01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Trigonometry
  4. Exercise : Convert a sum (or difference) of trigonometric functions into a product

Convert a sum (or difference) of trigonometric functions into a product Trigonometry

Convert the following into a product of trigonometric functions.

\sin\left(\dfrac{\pi}{3}\right)+\sin\left(-\dfrac{\pi}{6}\right)

Applying the identity \sin\left(-x\right)=-\sin\left(x\right) we get:

\sin\left(\dfrac{\pi}{3}\right)-\sin\left(\dfrac{\pi}{6}\right)

Since for any really numbers a and b
\sin\left(a\right) -\sin\left(b\right) = 2\sin\left(\dfrac{a - b}{2}\right)\cos\left(\dfrac{a + b}{2}\right)

And here:

  • \dfrac{\pi}{3}
  • b=\dfrac{\pi}{6}

The expression can be converted to :

2\sin\left(\dfrac{\dfrac{\pi}{3}-\dfrac{\pi}{6}}{2}\right)\cos\left(\dfrac{\dfrac{\pi}{3}+\dfrac{\pi}{6}}{2}\right)=2\sin\left(\dfrac{\pi}{12}\right)\cos\left(\dfrac{\pi}{4}\right)

2\sin\left(\dfrac{\pi}{12}\right)\cos\left(\dfrac{\pi}{4}\right)

\sin\left(\dfrac{\pi}{3}\right)+\cos\left(\dfrac{\pi}{3}\right)

Applying the identity \cos\left(x\right)=\sin\left(\dfrac{\pi}{2}-x\right) we get:

\sin\left(\dfrac{\pi}{3}\right)+\cos\left(\dfrac{\pi}{3}\right)=\sin\left(\dfrac{\pi}{3}\right)+\sin\left(\dfrac{\pi}{2}-\dfrac{\pi}{3}\right)=\sin\left(\dfrac{\pi}{3}\right)+\sin\left(\dfrac{\pi}{6}\right)

Since for any really numbers a and b
\sin\left(a\right) + \sin\left(b\right) = 2\sin\left(\dfrac{a + b}{2}\right)\cos\left(\dfrac{a - b}{2}\right)

And here:

  • a=\dfrac{\pi}{3}
  • b=\dfrac{\pi}{6}

The expression can be converted to :

2\sin\left(\dfrac{\dfrac{\pi}{3}+\dfrac{\pi}{6}}{2}\right)\cos\left(\dfrac{\dfrac{\pi}{3}-\dfrac{\pi}{6}}{2}\right)=2\sin\left(\dfrac{\pi}{4}\right)\cos\left(\dfrac{\pi}{12}\right)

2\sin\left(\dfrac{\pi}{4}\right)\cos\left(\dfrac{\pi}{12}\right)

\cos\left(\dfrac{\pi}{2}\right)+\cos\left(\dfrac{3\pi}{2}\right)

Since for any really numbers a and b

\cos\left(a\right)+\cos\left(b\right)=2\cos\left(\dfrac{a+b}{2}\right)\cos\left(\dfrac{a-b}{2}\right)

And here:

  • a=\dfrac{\pi}{2}
  • b=\dfrac{3\pi}{2}

The expression can be converted to:

2\cos\left(\dfrac{\dfrac{\pi}{2}+\dfrac{3\pi}{2}}{2}\right)\cos\left(\dfrac{\dfrac{\pi}{2}-\dfrac{3\pi}{2}}{2}\right)=2\cos\left(\pi\right)\cos\left(-\dfrac{\pi}{2}\right)

Applying the identity:

\cos\left(-x\right)=\cos\left(x\right)

We get:

2\cos\left(\pi\right)\cos\left(\dfrac{\pi}{2}\right)

2\sin^{2}\left(\dfrac{\pi}{3}\right)\cos\left(\dfrac{\pi}{6}\right)+\sin\left(\dfrac{2\pi}{3}\right)\sin\left(\dfrac{\pi}{3}\right)

Applying the identity \sin\left(2x\right)=2\sin\left(x\right)\cos\left(x\right) we get:

2\sin^{2}\left(\dfrac{\pi}{3}\right)\cos\left(\dfrac{\pi}{6}\right)+\sin\left(\dfrac{2\pi}{3}\right)\sin\left(\dfrac{\pi}{3}\right)

=2\sin^{2}\left(\dfrac{\pi}{3}\right)\cos\left(\dfrac{\pi}{6}\right)+2\sin\left(\dfrac{\pi}{3}\right)\cos\left(\dfrac{\pi}{3}\right)\cdot\sin\left(\dfrac{\pi}{3}\right)

=2\sin^{2}\left(\dfrac{\pi}{3}\right)\cos\left(\dfrac{\pi}{6}\right)+2\sin^{2}\left(\dfrac{\pi}{3}\right)\cos\left(\dfrac{\pi}{3}\right)

=2\sin^{2}\left(\dfrac{\pi}{3}\right)\left[\cos\left(\dfrac{\pi}{6}\right)+\cos\left(\dfrac{\pi}{3}\right)\right]

Since for any really numbers a and b
\cos\left(a\right)+\cos\left(b\right)=2\cos\left(\dfrac{a+b}{2}\right)\cos\left(\dfrac{a-b}{2}\right)

And here:

  • a=\dfrac{\pi}{6}
  • b=\dfrac{\pi}{3}

The expression can be converted to :

2\sin^{2}\left(\dfrac{\pi}{3}\right)\cdot2\cos\left(\dfrac{\dfrac{\pi}{6}+\dfrac{\pi}{3}}{2}\right)\cos\left(\dfrac{\dfrac{\pi}{6}-\dfrac{\pi}{3}}{2}\right)=4\sin^{2}\left(\dfrac{\pi}{3}\right)\cos\left(\dfrac{\pi}{4}\right)\cos\left(-\dfrac{\pi}{12}\right)

Since \cos\left(-x\right)=\cos\left(x\right) :

4\sin^{2}\left(\dfrac{\pi}{3}\right)\cos\left(\dfrac{\pi}{4}\right)\cos\left(\dfrac{\pi}{12}\right)

2\cos^{2}\left(\dfrac{\pi}{9}\right)+2\cos^{2}\left(\dfrac{\pi}{18}\right)-2

Applying the identity 2\cos^{2}\left(x\right)-1=\cos\left(2x\right) and rearranging the expression we get:

2\cos^{2}\left(\dfrac{\pi}{9}\right)+2\cos^{2}\left(\dfrac{\pi}{18}\right)-2

=2\cos^{2}\left(\dfrac{\pi}{9}\right)-1+2\cos^{2}\left(\dfrac{\pi}{18}\right)-1

=\cos\left(2\cdot\dfrac{\pi}{9}\right)+\cos\left(2\cdot\dfrac{\pi}{18}\right)

=\cos\left(\dfrac{2\pi}{9}\right)+\cos\left(\dfrac{\pi}{9}\right)

Since for any really numbers a and b
\cos\left(a\right)-\cos\left(b\right)=-2\sin\left(\dfrac{a+b}{2}\right)\sin\left(\dfrac{a-b}{2}\right)

And here:

  • a=\dfrac{2\pi}{9}
  • b=\dfrac{\pi}{9}

The expression can be converted to :

2\cos\left(\dfrac{\dfrac{2\pi}{9}+\dfrac{\pi}{9}}{2}\right)\cos\left(\dfrac{\dfrac{2\pi}{9}-\dfrac{\pi}{9}}{2}\right)=2\cos\left(\dfrac{\pi}{6}\right)\cos\left(\dfrac{\pi}{18}\right)

2\cos\left(\dfrac{\pi}{6}\right)\cos\left(\dfrac{\pi}{18}\right)

\cos\left(\dfrac{2\pi}{5}\right)-\cos\left(\dfrac{\pi}{7}\right)

Since for any really numbers a and b

\cos\left(a\right)-\cos\left(b\right)=-2\sin\left(\dfrac{a+b}{2}\right)\sin\left(\dfrac{a-b}{2}\right)

And here:

  • a=\dfrac{2\pi}{5}
  • b=\dfrac{\pi}{7}

The expression can be converted to :

\cos\left(\dfrac{2\pi}{5}\right)-\cos\left(\dfrac{\pi}{7}\right)=-2\sin\left(\dfrac{\dfrac{2\pi}{5}+\dfrac{\pi}{7}}{2}\right)\sin\left(\dfrac{\dfrac{2\pi}{5}-\dfrac{\pi}{7}}{2}\right)=-2\sin\left(\dfrac{19\pi}{70}\right)\sin\left(\dfrac{9\pi}{70}\right)

-2\sin\left(\dfrac{19\pi}{70}\right)\sin\left(\dfrac{9\pi}{70}\right)

\sin\left(\dfrac{\pi}{5}+\dfrac{\pi}{4}\right)+\sin\left(\dfrac{\pi}{10}-\dfrac{\pi}{20}\right)

Simplifying the expression :

\sin\left(\dfrac{\pi}{5}+\dfrac{\pi}{4}\right)+\sin\left(\dfrac{\pi}{10}-\dfrac{\pi}{20}\right)=\sin\left(\dfrac{9\pi}{20}\right)+\sin\left(\dfrac{\pi}{20}\right)

Since for any really numbers a and b
\sin\left(a\right) + \sin\left(b\right) = 2\sin\left(\dfrac{a + b}{2}\right)\cos\left(\dfrac{a - b}{2}\right)

And here:

  • a=\dfrac{9\pi}{20}
  • b=\dfrac{\pi}{20}

The expression can be converted to :

2\sin\left(\dfrac{\dfrac{9\pi}{20}+\dfrac{\pi}{20}}{2}\right)\cos\left(\dfrac{\dfrac{9\pi}{20}-\dfrac{\pi}{20}}{2}\right)=2\sin\left(\dfrac{\pi}{4}\right)\cos\left(\dfrac{\pi}{5}\right)

2\sin\left(\dfrac{\pi}{4}\right)\cos\left(\dfrac{\pi}{5}\right)

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Trigonometric identities, equations and laws
  • Exercise : Calculate sin(x) (or cos(x)) and tan(x) when cos(x) (or sin(x)) is known
  • Exercise : Convert a product of trigonometric functions into a sum (or difference)
  • Exercise : Solve equations of the form cos(x)=a
  • Exercise : Solve equations of the form sin(x)=a
  • Exercise : Solve equations using the trigonometric identities
  • Exercise : Solve quadratric equations that involve trigonometric functions
  • support@kartable.com
  • Legal notice

© Kartable 2026