01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Trigonometry
  4. Exercise : Solve quadratric equations that involve trigonometric functions

Solve quadratric equations that involve trigonometric functions Trigonometry

Solve the following equations.

-\sin^2\left(x\right)+2\cos\left(x\right)=2

For any real number x:

\sin^{2}\left(x\right) = 1 - \cos^{2}\left(x\right)

Therefore:

-\sin^{2}\left(x\right) + 2\cos\left(x\right) = 2

-\left( 1 - \cos^{2}\left(x\right) \right) + 2\cos\left(x\right) = 2

-1 + \cos^{2}\left(x\right) + 2\cos\left(x\right) = 2

\cos^{2}\left(x\right) + 2\cos\left(x\right) - 3 = 0

Use the quadratic equation aX^2+bX+c=0 to find \cos\left(x\right) :

  • a = 1
  • b = 2
  • c = -3

The solutions are X = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Therefore:

\cos\left(x\right) = \dfrac{-2 \pm \sqrt{2^2 - 4\left(1\right)\left(-3\right)}}{2\left(1\right)}

\cos\left(x\right) = \dfrac{-2 \pm \sqrt{4 + 12}}{2}
\cos\left(x\right) = \dfrac{-2 \pm \sqrt{16}}{2}

\cos\left(x\right) = \dfrac{-2 \pm 4}{2}
\cos\left(x\right) = -1 \pm 2

\begin{cases} \cos\left(x\right) = 1\cr or \cr \cos\left(x\right) = -3 \end{cases}

The \cos\left(x\right) = -3 "solution" is impossible since \cos\left(x\right) has a range of \left[-1{,}1\right]. Therefore, \cos\left(x\right) = 1 is the only real solution.

The cosine function is equal to 1 when its argument is equal to 2n\pi, where n is an integer. Therefore:

x = 2n\pi, \ n \in \mathbb{Z}

x = 2n\pi, n \in \mathbb{Z}

3\cos\left(x\right) + \cos\left(2x\right) = -2

For any real number x:

\cos\left(2x\right) = 2\cos^2\left(x\right) - 1

Therefore:

3\cos\left(x\right) + \cos\left(2x\right) = -2

3\cos\left(x\right) + 2\cos^2\left(x\right) - 1 = -2

2\cos^2\left(x\right) + 3\cos\left(x\right) + 1 = 0

Use the quadratic equation aX^2+bX+c=0 to find \cos\left(x\right) :

  • a = 2
  • b = 3
  • c = 1

The solutions are X = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Therefore:

\cos\left(x\right) = \dfrac{-3 \pm \sqrt{3^2 - 4\left(2\right)\left(1\right)}}{2\left(2\right)}

\cos\left(x\right) = \dfrac{-3 \pm \sqrt{9 - 8}}{4}

\cos\left(x\right) = \dfrac{-3 \pm \sqrt{1}}{4}

\cos\left(x\right) = \dfrac{-3 \pm 1}{4}

\cos\left(x\right) = \dfrac{-3}{4} \pm \dfrac{1}{4}

\begin{cases} \cos\left(x\right) = \dfrac{-1}{2}\cr or \cr \cos\left(x\right) = -1 \end{cases}

The cosine function is equal to -1 when its argument is equal to \left(2n+1\right)\pi, where n is an integer. Therefore, one set of solutions is:

x = \left(2n+1\right)\pi, n \in \mathbb{Z}

The cosine function is equal to \dfrac{-1}{2} when its argument is equal to \dfrac{4\pi}{3} + 2n\pi or \dfrac{2\pi}{3} + 2n\pi, where n is an integer. Therefore, the rest of the solutions are:

x = \dfrac{4\pi}{3} + 2n\pi, n \in \mathbb{Z}

x = \dfrac{2\pi}{3} + 2n\pi, n \in \mathbb{Z}

x = \left(2n+1\right)\pi, n \in \mathbb{Z}

x = \dfrac{4\pi}{3} + 2n\pi, n \in \mathbb{Z}

x = \dfrac{2\pi}{3} + 2n\pi, n \in \mathbb{Z}

3\sin\left(2x\right) - \cos\left(x\right)\sin\left(2x\right) = 4\sin\left(x\right)

For any real number x:

\sin\left(2x\right) = 2\sin\left(x\right)\cos\left(x\right)

Therefore:

3\sin\left(2x\right) - \cos\left(x\right)\sin\left(2x\right) = 4\sin\left(x\right)

6\sin\left(x\right)\cos\left(x\right) - 2\sin\left(x\right)\cos^2\left(x\right) = 4\sin\left(x\right)

-3\sin\left(x\right)\cos\left(x\right) + \sin\left(x\right)\cos^2\left(x\right) + 2\sin\left(x\right) = 0

\sin\left(x\right)\left( \cos^2\left(x\right) - 3\cos\left(x\right) + 2 \right) = 0

The solutions to this are the combined solutions to:

\sin\left(x\right) = 0

And:

\cos^2\left(x\right) - 3\cos\left(x\right) + 2 = 0

The sine function is equal to zero when its argument is \pi n, where n is an integer. Therefore, one set of solutions is:

x = \pi n, n \in \mathbb{Z}

Use the quadratic equation aX^2+bX+c=0 to find \cos\left(x\right) for \cos^2\left(x\right) - 3\cos\left(x\right) + 2 = 0

  • a = 1
  • b = -3
  • c = 2

The solutions are X = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Therefore:

\cos\left(x\right) = \dfrac{3 \pm \sqrt{\left(-3\right)^2 - 4\left(1\right)\left(2\right)}}{2\left(1\right)}

\cos\left(x\right) = \dfrac{3 \pm \sqrt{9 - 8}}{2}

\cos\left(x\right) = \dfrac{3 \pm \sqrt{1}}{2}

\cos\left(x\right) = \dfrac{3 \pm 1}{2}

\cos\left(x\right) = \dfrac{3}{2} \pm \dfrac{1}{2}

\begin{cases} \cos\left(x\right) = 2\cr or \cr \cos\left(x\right) = 1 \end{cases}

The first equation is impossible since \cos\left(x\right) has a range of \left[-1{,}1\right]. Therefore, \cos\left(x\right) = 1 is the only real solution.

The cosine function is equal to 1 when its argument is equal to 2n\pi, where n is an integer. Therefore one set of solutions is:

x = 2n\pi, n \in \mathbb{Z}

This is a subset of the other solution set x = \pi n, n \in \mathbb{Z}.

x = n\pi, n \in \mathbb{Z}

\cos\left(x\right) + \cos\left(2x\right) = -\sin^2\left(x\right)

For any real number x:

\cos\left(2x\right) = \cos^2\left(x\right) - \sin^2\left(x\right)

Therefore:

\cos\left(x\right) + \cos\left(2x\right) = -\sin^2\left(x\right)

\cos\left(x\right) + \cos^2\left(x\right) - \sin^2\left(x\right) = -\sin^2\left(x\right)

\cos^2\left(x\right) + \cos\left(x\right) = 0

Use the quadratic equation aX^2+bX+c=0 to find \cos\left(x\right) :

  • a = 1
  • b = 1
  • c = 0

The solutions are X = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Therefore:

\cos\left(x\right) = \dfrac{-1 \pm \sqrt{1^2 - 4\left(1\right)\left(0\right)}}{2\left(1\right)}

\cos\left(x\right) = \dfrac{-1 \pm \sqrt{1}}{2}

\cos\left(x\right) = \dfrac{-1 \pm 1}{2}
\cos\left(x\right) = \dfrac{-1}{2} \pm \dfrac{1}{2}

\begin{cases} \cos\left(x\right) = 0\cr or \cr \cos\left(x\right) = -1 \end{cases}

The cosine function is equal to -1 when its argument is equal to \pi \left(2n + 1\right), where n is an integer. Therefore, one set of solutions is:

x = \pi \left(2n + 1\right), n \in \mathbb{Z}

The cosine function is equal to 0 when its argument is equal to \dfrac{\pi}{2}\left(2n + 1\right), where n is an integer.

x = \pi \left(2n + 1\right), n \in \mathbb{Z}\\x = \dfrac{\pi}{2}\left(2n + 1\right), n \in \mathbb{Z}

-2\sin^2\left(x\right) + 2 - 4\cos\left(2x\right) + 4\sin\left(x\right) = -2\cos^2\left(x\right)

For any real number x:

\cos\left(2x\right) = \cos^2\left(x\right) - \sin^2\left(x\right)

and

\cos^2\left(x\right) = 1 - \sin^2\left(x\right)

Therefore:

-2\sin^2\left(x\right) + 2 - 4\cos\left(2x\right) + 4\sin\left(x\right) = -2\cos^2\left(x\right)

-2\sin^2\left(x\right) + 2 - 4\left( \cos^2\left(x\right) - \sin^2\left(x\right) \right) + 4\sin\left(x\right) = -2\cos^2\left(x\right)

2\sin^2\left(x\right) + 2 - 4\cos^2\left(x\right) + 4\sin\left(x\right) = -2\cos^2\left(x\right)

\sin^2\left(x\right) + 2\sin\left(x\right) + 1 = \cos^2\left(x\right)

\sin^2\left(x\right) + 2\sin\left(x\right) + 1 = 1 - \sin^2\left(x\right)

2\sin^2\left(x\right) + 2\sin\left(x\right) = 0

\sin^2\left(x\right) + \sin\left(x\right) = 0

Use the quadratic equation aX^2+bX+c=0 to find \cos\left(x\right) :

  • a = 1
  • b = 1
  • c = 0

The solutions are X = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Therefore:

\sin\left(x\right) = \dfrac{-1 \pm \sqrt{1^2 - 4\left(1\right)\left(0\right)}}{2\left(1\right)}

\sin\left(x\right) = \dfrac{-1 \pm \sqrt{1}}{2}

\sin\left(x\right) = \dfrac{-1 \pm 1}{2}

\sin\left(x\right) = \dfrac{-1}{2} \pm \dfrac{1}{2}

\begin{cases} \sin\left(x\right) = 0\cr or \cr \sin\left(x\right) = -1 \end{cases}

The sine function is equal to 0 when its argument is equal to \pi n, where n is an integer. Therefore, one set of solutions is:

x = \pi n, n \in \mathbb{Z}

The sin function is equal to -1 when its argument is equal to \dfrac{3\pi}{2} + 2\pi n, where n is an integer. Therefore, one set of solutions is:

x = \dfrac{3\pi}{2} + 2\pi n, n \in \mathbb{Z}

x = \pi n, n \in \mathbb{Z}\\x = \dfrac{3\pi}{2} + 2\pi n, n \in \mathbb{Z}

\cos\left(2x\right) + \sin\left(\dfrac{-x}{2}\right)\cos\left(\dfrac{x}{2}\right) = -5

For any real number x:

  • \cos\left(2x\right) = \cos^2\left(x\right) - \sin^2\left(x\right)
  • \sin\left(2x\right) = 2\sin\left(x\right)\cos\left(x\right)
  • \sin\left(-x\right) = -\sin\left(x\right)
  • \cos^2\left(x\right) = 1 - \sin^2\left(x\right)

Therefore:

\left( \cos\left(2x\right) \right) + \left( \sin\left(\dfrac{-x}{2}\right)\cos\left(\dfrac{x}{2}\right) \right) = -5

\left( \cos^2\left(x\right) - \sin^2\left(x\right) \right) + \left( -\sin\left(\dfrac{x}{2}\right)\cos\left(\dfrac{x}{2}\right) \right) = -5

\left( \cos^2\left(x\right) - \sin^2\left(x\right) \right) + \left( -\sin\left(x\right) \right) = -5

\left( 1 - \sin^2\left(x\right) - \sin^2\left(x\right) \right) + \left( -\sin\left(x\right) \right) = -5

-2\sin^2\left(x\right) - \sin\left(x\right) + 6 = 0

2\sin^2\left(x\right) + \sin\left(x\right) - 6 = 0

Use the quadratic equation aX^2+bX+c=0 to find \cos\left(x\right) :

  • a = 2
  • b = 1
  • c = -6

The solutions are X = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Therefore:

\sin\left(x\right) = \dfrac{-1 \pm \sqrt{1^2 - 4\left(2\right)\left(-6\right)}}{2\left(2\right)}

\sin\left(x\right) = \dfrac{-1 \pm \sqrt{1 + 48}}{4}

\sin\left(x\right) = \dfrac{-1 \pm \sqrt{49}}{4}

\sin\left(x\right) = \dfrac{-1 \pm 7}{4}

\sin\left(x\right) = \dfrac{-1}{4} \pm \dfrac{7}{4}

\begin{cases} \sin\left(x\right) = \dfrac{3}{2}\cr or \cr \sin\left(x\right) = -2\end{cases}

Both the \sin\left(x\right) = \dfrac{3}{2} and \sin\left(x\right) = -2 are impossible since \sin\left(x\right) has a range of \left[-1{,}1\right]. Therefore, there are no real solutions.

There are no real solutions.

\tan^2\left(x\right) + \dfrac{3 - \cos\left(2x\right)}{1 + \cos\left(2x\right)} = \cos\left(2x\right)

For any real number x:

\tan^2\left(x\right) = \dfrac{1 - \cos\left(2x\right)}{1 + \cos\left(2x\right)}

Therefore:

\tan^2\left(x\right) + \dfrac{3 - \cos\left(2x\right)}{1 + \cos\left(2x\right)} = \cos\left(2x\right)

\dfrac{1 - \cos\left(2x\right)}{1 + \cos\left(2x\right)} + \dfrac{3 - \cos\left(2x\right)}{1 + \cos\left(2x\right)} = \cos\left(2x\right)

\dfrac{4 - 2\cos\left(2x\right)}{1 + \cos\left(2x\right)} = \cos\left(2x\right)

4 - 2\cos\left(2x\right) = \cos\left(2x\right) + \cos^2\left(2x\right)

\cos^2\left(2x\right) + 3\cos\left(2x\right) - 4 = 0

Use the quadratic equation aX^2+bX+c=0 to find \cos\left(x\right) :

  • a = 1
  • b = 3
  • c = -4

The solutions are X = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Therefore:

\cos\left(2x\right) = \dfrac{-3 \pm \sqrt{3^2 - 4\left(1\right)\left(-4\right)}}{2\left(1\right)}

\cos\left(2x\right) = \dfrac{-3 \pm \sqrt{9 + 16}}{2}

\cos\left(2x\right) = \dfrac{-3 \pm \sqrt{25}}{2}

\cos\left(2x\right) = \dfrac{-3 \pm 5}{2}

\cos\left(2x\right) = \dfrac{-3}{2} \pm \dfrac{5}{2}

\begin{cases} \cos\left(2x\right) = -4\cr or \cr \sin\left(x\right) = 1 \end{cases}

\cos\left(2x\right) = -4 is impossible since \cos\left(2x\right) has a range of \left[-1{,}1\right]. Therefore, \cos\left(2x\right) = 1 is the only real solution.

The cosine function is equal to 1 when its argument is equal to 2\pi n, where n is an integer. Therefore, the solution is:

2x = 2\pi n, n \in \mathbb{Z}

x = \pi n, n \in \mathbb{Z}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Trigonometric identities, equations and laws
  • Exercise : Calculate sin(x) (or cos(x)) and tan(x) when cos(x) (or sin(x)) is known
  • Exercise : Convert a sum (or difference) of trigonometric functions into a product
  • Exercise : Convert a product of trigonometric functions into a sum (or difference)
  • Exercise : Solve equations of the form cos(x)=a
  • Exercise : Solve equations of the form sin(x)=a
  • Exercise : Solve equations using the trigonometric identities
  • support@kartable.com
  • Legal notice

© Kartable 2026