01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Trigonometry
  4. Exercise : Solve equations using the trigonometric identities

Solve equations using the trigonometric identities Trigonometry

Solve the following equations.

\cos^2\left(x\right)=\sin^2\left(x\right)

For any real number x:

\cos^{2}\left(x\right) - \sin^{2}\left(x\right) = \cos\left(2x\right)

Therefore:

\cos^{2}\left(x\right) = \sin^{2}\left(x\right) :

\cos^{2}\left(x\right) - \sin^{2}\left(x\right) = 0

\cos\left(2x\right) = 0

The cosine function is equal to zero at intervals of \dfrac{\pi}{2}\left(2n + 1\right), where n is an integer \left(\dfrac{-3\pi}{2}, \dfrac{-\pi}{2}, \dfrac{\pi}{2}, \dfrac{3\pi}{2}, ...\right).

Therefore:

2x = \dfrac{\pi}{2}\left(2n + 1\right)

x = \dfrac{\pi}{4}\left(2n + 1\right)

x = \dfrac{\pi}{4}\left(2n + 1\right),\ n \in \mathbb{Z}

\sin\left(2x\right)+\sin^{2}\left(x\right)=\cos^{2}\left(x\right)

Rearrange the equation to get:

\sin\left(2x\right)=\cos^{2}\left(x\right)-\sin^{2}\left(x\right)

Since \cos^{2}\left(\theta\right)-\sin^{2}\left(\theta\right)=\cos\left(2\theta\right) :

\sin\left(2x\right)=\cos\left(2x\right)

Dividing both sides by \cos\left(2x\right) :

\dfrac{\sin\left(2x\right)}{\cos\left(2x\right)}=\dfrac{\cos\left(2x\right)}{\cos\left(2x\right)}

Applying identity \tan\left(\theta\right)=\dfrac{\sin\left(\theta\right)}{\cos\left(\theta\right)} :

\tan\left(2x\right)=1

The tangent function is equal to 1 at intervals of \left(\dfrac{\pi}{4}+n\pi \right), where n is an integer. Therefore:

2x=\dfrac{\pi}{4}+n\pi

Dividing both sides by 2:

x=\dfrac{\pi}{8}+\dfrac{n\pi}{2}

\sqrt{3}\cos\left(x\right)+\sin\left(x\right)=2

Divide both sides by 2:

\dfrac{\sqrt{3}\cos\left(x\right)+\sin\left(x\right)}{2}=\dfrac{2}{2}

\dfrac{\sqrt{3}}{2}\cos\left(x\right)+\dfrac{1}{2}\sin\left(x\right)=1

Applying \sin\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2} and \cos\left(\dfrac{\pi}{3}\right)=\dfrac{1}{2} :

\sin\left(\dfrac{\pi}{3}\right)\cos\left(x\right)+\cos\left(\dfrac{\pi}{3}\right)\sin\left(x\right)=1

Applying \sin\left(a+b\right)=\sin\left(a\right)\cos\left(b\right)+\cos\left(a\right)\sin\left(b\right) :

Here:

  • a=\dfrac{\pi}{3}
  • b=x

Therefore:

\sin\left(\dfrac{\pi}{3}+x\right)=1

The sine function is equal to 1 at intervals of \left(\dfrac{\pi}{2}+{2}n\pi \right), where n is an integer. Therefore:

\dfrac{\pi}{3}+x=\dfrac{\pi}{2}+{2}n\pi

The solution is:

x=\dfrac{\pi}{6}+{2}n\pi,\ n \in \mathbb{Z}

\cos\left(x\right)\cos\left(\dfrac{\pi}{5}\right)=\sin\left(x\right)\sin\left(\dfrac{\pi}{5}\right)

\cos\left(x\right)\cos\left(\dfrac{\pi}{5}\right)=\sin\left(x\right)\sin\left(\dfrac{\pi}{5}\right)

\cos\left(x\right)\cos\left(\dfrac{\pi}{5}\right)-\sin\left(x\right)\sin\left(\dfrac{\pi}{5}\right)=0

Applying the indentity \cos\left(a+b\right)=\cos\left(a\right)\cos\left(b\right)-\sin\left(a\right)\sin\left(b\right) :

  • a=x
  • b=\dfrac{\pi}{5}

\cos\left(x+\dfrac{\pi}{5}\right)=0

The cosine function is equal to zero at intervals of \dfrac{\pi}{2}\left(2n + 1\right), where n is an integer. Therefore:

x+\dfrac{\pi}{5}=\dfrac{\pi}{2}\left(2n + 1\right)

The solution is:

x=\dfrac{3\pi}{10}+n\pi, \ n \in \mathbb{Z}

\sin\left(x-\dfrac{\pi}{4}\right)=\sqrt{3}\cos\left(x-\dfrac{\pi}{4}\right)

Dividing both sides by \cos\left(x-\dfrac{\pi}{4}\right) :

\dfrac{\sin\left(x-\dfrac{\pi}{4}\right)}{\cos\left(x-\dfrac{\pi}{4}\right)}=\dfrac{\sqrt{3}\cos\left(x-\dfrac{\pi}{4}\right)}{\cos\left(x-\dfrac{\pi}{4}\right)}

\dfrac{\sin\left(x-\dfrac{\pi}{4}\right)}{\cos\left(x-\dfrac{\pi}{4}\right)}=\sqrt{3}

Applying the identity \tan\left(x\right)=\dfrac{\sin\left(x\right)}{\cos\left(x\right)} :

\tan\left(x-\dfrac{\pi}{4}\right)=\sqrt{3}

The tangent function is equal to \sqrt{3} at intervals of \left(\dfrac{\pi}{3}+n\pi \right), where n is an integer.
Therefore:

x-\dfrac{\pi}{4}=\dfrac{\pi}{3}+n\pi

The solution is:

x=\dfrac{7\pi}{12}+n\pi,\ n \in \mathbb{Z}

\dfrac{1-\tan^{2}\left(x\right)}{1+\tan^{2}\left(x\right)}=1

Applying the identity \cos\left(2x\right)=\dfrac{1-\tan^{2}\left(x\right)}{1+\tan^{2}\left(x\right)} :

\cos\left(2x\right)=1

The cosine function is equal to 1 at intervals of 2n\pi, where n is an integer. Therefore:

2x=2n\pi

The solution is:

x=n\pi

\sin^{2}\left(x\right)+\cos^{2}\left(x\right)-2\sin\left(x\right)+1=0

Applying the identity \sin^{2}\left(x\right)+\cos^{2}\left(x\right)=1 :

1-2\sin\left(x\right)+1=0

2-2\sin\left(x\right)=0

-2\sin\left(x\right)=-2

\sin\left(x\right)=1

The sine function is equal to 1 at intervals of \left(\dfrac{\pi}{2}+{2}n\pi \right), where n is an integer. Therefore:

x=\dfrac{\pi}{2}+{2}n\pi

x=\dfrac{\pi}{2}+{2}n\pi, \ n \in \mathbb{Z}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Trigonometric identities, equations and laws
  • Exercise : Calculate sin(x) (or cos(x)) and tan(x) when cos(x) (or sin(x)) is known
  • Exercise : Convert a sum (or difference) of trigonometric functions into a product
  • Exercise : Convert a product of trigonometric functions into a sum (or difference)
  • Exercise : Solve equations of the form cos(x)=a
  • Exercise : Solve equations of the form sin(x)=a
  • Exercise : Solve quadratric equations that involve trigonometric functions
  • support@kartable.com
  • Legal notice

© Kartable 2026