Convert z=3+2i into the exponential form.
If z=x+iy with x\neq0, then:
- |z|=\sqrt{x^2+y^2}
- \theta=tan^{-1}\left(\dfrac{y}{x}\right)
The exponential form of z is:
z=|z|e^{i\theta}
Here, we have:
z_1 = 3 + 2i
Therefore:
- |z_1|=\sqrt{2^2+3^2}=\sqrt{13}
- \theta=tan^{-1}\left(\dfrac{2}{3}\right)
The exponential form of z is:
z = \sqrt {13} e^{i \tan^{- 1} \left(\frac {2} {3}\right)}
Convert z=-1+2i into the exponential form.
If z=x+iy with x\neq0, then:
- |z|=\sqrt{x^2+y^2}
- \theta=tan^{-1}\left(\dfrac{y}{x}\right)
The exponential form of z is:
z=|z|e^{i\theta}
Here, we have:
z_1 = -1 + 2i
Therefore:
- |z_1|=\sqrt{\left(-1\right)^2+2^2}=\sqrt{5}
- \theta=tan^{-1}\left(\dfrac{2}{-1}\right)
The exponential form of z is:
z = \sqrt {5} e^{i \tan^{- 1} \left(-2\right)}
Convert z=7+4i into the exponential form.
If z=x+iy with x\neq0, then:
- |z|=\sqrt{x^2+y^2}
- \theta=tan^{-1}\left(\dfrac{y}{x}\right)
The exponential form of z is:
z=|z|e^{i\theta}
Here, we have:
z_1 = 7 + 4i
Therefore:
- |z_1|=\sqrt{7^2+4^2}=\sqrt{65}
- \theta=tan^{-1}\left(\dfrac{4}{7}\right)
The exponential form of z is:
z = \sqrt {65} e^{i \tan^{- 1} \left(\frac {4} {7}\right)}
Convert z=-4-5i into the exponential form.
If z=x+iy with x\neq0, then:
- |z|=\sqrt{x^2+y^2}
- \theta=tan^{-1}\left(\dfrac{y}{x}\right)
The exponential form of z is:
z=|z|e^{i\theta}
Here, we have:
z_1 = -4 -5i
Therefore:
- |z_1|=\sqrt{\left(-4\right)^2+\left(-5\right)^2}=\sqrt{41}
- \theta=tan^{-1}\left(\dfrac{-5}{-4}\right)=tan^{-1}\left(\dfrac{5}{4}\right)
The exponential form of z is:
z = \sqrt {41} e^{i \tan^{- 1} \left(\frac {5} {4}\right)}
Convert z=-9+7i into the exponential form.
If z=x+iy with x\neq0, then:
- |z|=\sqrt{x^2+y^2}
- \theta=tan^{-1}\left(\dfrac{y}{x}\right)
The exponential form of z is:
z=|z|e^{i\theta}
Here, we have:
z_1 =-9+7i
Therefore:
- |z_1|=\sqrt{\left(-9\right)^2+7^2}=\sqrt{130}
- \theta=tan^{-1}\left(\dfrac{7}{-9}\right)
The exponential form of z is:
z = \sqrt {130} e^{i \tan^{- 1} \left(\frac {-7} {9}\right)}
Convert z=7-7i into the exponential form.
If z=x+iy with x\neq0, then:
- |z|=\sqrt{x^2+y^2}
- \theta=tan^{-1}\left(\dfrac{y}{x}\right)
The exponential form of z is:
z=|z|e^{i\theta}
Here, we have:
z_1 = 7-7i
Therefore:
- |z_1|=\sqrt{7^2+\left(-7\right)^2}=\sqrt{98}=7\sqrt{2}
- \theta=tan^{-1}\left(\dfrac{-7}{7}\right)=tan^{-1}\left(-1\right)=-\dfrac{\pi}{4}
The exponential form of z is:
z = 7\sqrt {2} e^{\frac{-i \pi}{4} }
Convert z=1+\sqrt{3}i into the exponential form.
If z=x+iy with x\neq0, then:
- |z|=\sqrt{x^2+y^2}
- \theta=tan^{-1}\left(\dfrac{y}{x}\right)
The exponential form of z is:
z=|z|e^{i\theta}
Here, we have:
z_1 =1+\sqrt{3}i
Therefore:
- |z_1|=\sqrt{1^2+\left(\sqrt{3}\right)^2}=\sqrt{4}=2
- \theta=tan^{-1}\left(\dfrac{\sqrt{3}}{1}\right)=\dfrac{\pi}{3}
The exponential form of z is:
z =2 e^{i \frac{\pi}{3}}