01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra II
  4. Exercise : Convert between any forms of complex numbers

Convert between any forms of complex numbers Algebra II

Convert z=3+2i into the exponential form.

If z=x+iy with x\neq0, then:

  • |z|=\sqrt{x^2+y^2}
  • \theta=tan^{-1}\left(\dfrac{y}{x}\right)

The exponential form of z is:

z=|z|e^{i\theta}

Here, we have:

z_1 = 3 + 2i

Therefore:

  • |z_1|=\sqrt{2^2+3^2}=\sqrt{13}
  • \theta=tan^{-1}\left(\dfrac{2}{3}\right)

The exponential form of z is:

z = \sqrt {13} e^{i \tan^{- 1} \left(\frac {2} {3}\right)}

Convert z=-1+2i into the exponential form.

If z=x+iy with x\neq0, then:

  • |z|=\sqrt{x^2+y^2}
  • \theta=tan^{-1}\left(\dfrac{y}{x}\right)

The exponential form of z is:

z=|z|e^{i\theta}

Here, we have:

z_1 = -1 + 2i

Therefore:

  • |z_1|=\sqrt{\left(-1\right)^2+2^2}=\sqrt{5}
  • \theta=tan^{-1}\left(\dfrac{2}{-1}\right)

The exponential form of z is:

z = \sqrt {5} e^{i \tan^{- 1} \left(-2\right)}

Convert z=7+4i into the exponential form.

If z=x+iy with x\neq0, then:

  • |z|=\sqrt{x^2+y^2}
  • \theta=tan^{-1}\left(\dfrac{y}{x}\right)

The exponential form of z is:

z=|z|e^{i\theta}

Here, we have:

z_1 = 7 + 4i

Therefore:

  • |z_1|=\sqrt{7^2+4^2}=\sqrt{65}
  • \theta=tan^{-1}\left(\dfrac{4}{7}\right)

The exponential form of z is:

z = \sqrt {65} e^{i \tan^{- 1} \left(\frac {4} {7}\right)}

Convert z=-4-5i into the exponential form.

If z=x+iy with x\neq0, then:

  • |z|=\sqrt{x^2+y^2}
  • \theta=tan^{-1}\left(\dfrac{y}{x}\right)

The exponential form of z is:

z=|z|e^{i\theta}

Here, we have:

z_1 = -4 -5i

Therefore:

  • |z_1|=\sqrt{\left(-4\right)^2+\left(-5\right)^2}=\sqrt{41}
  • \theta=tan^{-1}\left(\dfrac{-5}{-4}\right)=tan^{-1}\left(\dfrac{5}{4}\right)

The exponential form of z is:

z = \sqrt {41} e^{i \tan^{- 1} \left(\frac {5} {4}\right)}

Convert z=-9+7i into the exponential form.

If z=x+iy with x\neq0, then:

  • |z|=\sqrt{x^2+y^2}
  • \theta=tan^{-1}\left(\dfrac{y}{x}\right)

The exponential form of z is:

z=|z|e^{i\theta}

Here, we have:

z_1 =-9+7i

Therefore:

  • |z_1|=\sqrt{\left(-9\right)^2+7^2}=\sqrt{130}
  • \theta=tan^{-1}\left(\dfrac{7}{-9}\right)

The exponential form of z is:

z = \sqrt {130} e^{i \tan^{- 1} \left(\frac {-7} {9}\right)}

Convert z=7-7i into the exponential form.

If z=x+iy with x\neq0, then:

  • |z|=\sqrt{x^2+y^2}
  • \theta=tan^{-1}\left(\dfrac{y}{x}\right)

The exponential form of z is:

z=|z|e^{i\theta}

Here, we have:

z_1 = 7-7i

Therefore:

  • |z_1|=\sqrt{7^2+\left(-7\right)^2}=\sqrt{98}=7\sqrt{2}
  • \theta=tan^{-1}\left(\dfrac{-7}{7}\right)=tan^{-1}\left(-1\right)=-\dfrac{\pi}{4}

The exponential form of z is:

z = 7\sqrt {2} e^{\frac{-i \pi}{4} }

Convert z=1+\sqrt{3}i into the exponential form.

If z=x+iy with x\neq0, then:

  • |z|=\sqrt{x^2+y^2}
  • \theta=tan^{-1}\left(\dfrac{y}{x}\right)

The exponential form of z is:

z=|z|e^{i\theta}

Here, we have:

z_1 =1+\sqrt{3}i

Therefore:

  • |z_1|=\sqrt{1^2+\left(\sqrt{3}\right)^2}=\sqrt{4}=2
  • \theta=tan^{-1}\left(\dfrac{\sqrt{3}}{1}\right)=\dfrac{\pi}{3}

The exponential form of z is:

z =2 e^{i \frac{\pi}{3}}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Complex numbers
  • Exercise : Find the magnitude (or absolute value) of a complex number
  • Exercise : Multiply complex numbers
  • Exercise : Divide complex numbers
  • Exercise : Match points of the complex plan and complex numbers
  • Exercise : Find the complex roots of a quadratic using the discriminant
  • support@kartable.com
  • Legal notice

© Kartable 2026