01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra II
  4. Exercise : Multiply complex numbers

Multiply complex numbers Algebra II

In the following questions, what is the value of z_1.z_2 ?

\left(3-i\right)\times\left(2+5i\right)

Let z_1=a_1+b_1i and z_2=a_2+b_2i

Then:

z_1\times z_2=\left(a_1+b_1i\right)\times\left(a_2+b_2i\right)

Here, we have:

  • z_1=3-i
  • z_2=2+5i

\left(3-i\right)\times\left(2+5i\right)=6-2i+15i-5i^2

Since i^2=-1, we have:

\left(3-i\right)\times\left(2+5i\right)=6+5+13i

\left(3-i\right)\times\left(2+5i\right)=11+13i

\left(1-2i\right) \times \left(1 + 2i\right)

Let z_1=a_1+b_1i and z_2=a_2+b_2i

Then:

z_1\times z_2=\left(a_1+b_1i\right)\times\left(a_2+b_2i\right)

Here, we have:

  • z_1=1-2i
  • z_2=1+2i

\left(1-2i\right) \times \left(1 + 2i\right)=1-2i+2i-4i^2

Since i^2=-1, we have:

\left(1-2i\right) \times \left(1 + 2i\right)=1+4=5

\left(1-2i\right) \times \left(1 + 2i\right)=5

\left(1-4i\right) \times \left(2 + i\right)

Let z_1=a_1+b_1i and z_2=a_2+b_2i

Then:

z_1\times z_2=\left(a_1+b_1i\right)\times\left(a_2+b_2i\right)

Here, we have:

  • z_1=1-4i
  • z_2=2+i

\left(1-4i\right) \times \left(2 + i\right)=2+i-8i-4i^2

Since i^2=-1, we have:

\left(1-4i\right) \times \left(2 + i\right)=2+4+i-8i=6-7i

\left(1-4i\right) \times \left(2 + i\right)=6-7i

\left(2-3i\right) \times \left(5 - 6i\right)

Let z_1=a_1+b_1i and z_2=a_2+b_2i

Then:

z_1\times z_2=\left(a_1+b_1i\right)\times\left(a_2+b_2i\right)

Here, we have:

  • z_1=2-3i
  • z_2=5-6i

\left(2-3i\right) \times \left(5 - 6i\right)=10-12i-15i+18i^2

Since i^2=-1, we have:

\left(2-3i\right) \times \left(5 - 6i\right)=10-18-27i=-8-27i

\left(2-3i\right) \times \left(5 - 6i\right)=-8-27i

\left(5+7i\right) \times \left(6 - 2i\right)

Let z_1=a_1+b_1i and z_2=a_2+b_2i

Then:

z_1\times z_2=\left(a_1+b_1i\right)\times\left(a_2+b_2i\right)

Here, we have:

  • z_1=5+7i
  • z_2=6-2i

\left(5+7i\right) \times \left(6 - 2i\right)=30-10i+42i-14i^2

Since i^2=-1, we have:

\left(5+7i\right) \times \left(6 - 2i\right)=30+14-10i+42i=44+32i

\left(5+7i\right) \times \left(6 - 2i\right)=44+32i

\left(3-9i\right) \times \left(2 - 8i\right)

Let z_1=a_1+b_1i and z_2=a_2+b_2i

Then:

z_1\times z_2=\left(a_1+b_1i\right)\times\left(a_2+b_2i\right)

Here, we have:

  • z_1=3-9i
  • z_2=2-8i

\left(3-9i\right) \times \left(2 - 8i\right)=6-24i-18i+72i^2

Since i^2=-1, we have:

\left(3-9i\right) \times \left(2 - 8i\right)=6-24i-18i-72=-66-42i

\left(3-9i\right) \times \left(2 - 8i\right)=-66-42i

\left(3-7i\right) \times \left(3 +7i\right)

Let z_1=a_1+b_1i and z_2=a_2+b_2i

Then:

z_1\times z_2=\left(a_1+b_1i\right)\times\left(a_2+b_2i\right)

Here, we have:

  • z_1=3-7i
  • z_2=3+7i

\left(3-7i\right) \times \left(3 +7i\right)=9+21i-21i-49i^2

Since i^2=-1, we have:

\left(3-7i\right) \times \left(3 +7i\right)=9+49=58

\left(3-7i\right) \times \left(3 +7i\right)=58

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Complex numbers
  • Exercise : Find the magnitude (or absolute value) of a complex number
  • Exercise : Divide complex numbers
  • Exercise : Match points of the complex plan and complex numbers
  • Exercise : Find the complex roots of a quadratic using the discriminant
  • Exercise : Convert between any forms of complex numbers
  • support@kartable.com
  • Legal notice

© Kartable 2026