01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Algebra II
  4. Exercise : Divide complex numbers

Divide complex numbers Algebra II

What is the algebric form of the following complex numbers?

\dfrac{3+4i}{2-i}

Here we have:

  • z_1=3+4i
  • z_2=2-i

Therefore:

z_1\div z_2=\dfrac{3+4i}{2-i}

Multiply top and bottom by the conjugate of 2-i :

\dfrac{3+4i}{2-i}=\dfrac{\left(3+4i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}

FOIL gives:

\dfrac{3+4i}{2-i}=\dfrac{6+8i+3i+4i^2}{\left(2-i\right)\left(2+i\right)}

Since i^2=-1, we have:

\dfrac{3+4i}{2-i}=\dfrac{6-4+11i}{\left(2-i\right)\left(2+i\right)}

Furthermore, we know that \left(a+ib\right)\left(a-ib\right)=a^2+b^2. Therefore:

\dfrac{3+4i}{2-i}=\dfrac{2+11i}{4+1}

\dfrac{3+4i}{2-i}=\dfrac{2+11i}{5}

\dfrac{2+3i}{1-2i}

Here we have:

  • z_1=2+3i
  • z_2=1-2i

Therefore:

z_1\div z_2=\dfrac{2+3i}{1-2i}

Multiply top and bottom by the conjugate of 1-2i :

\dfrac{2+3i}{1-2i}=\dfrac{\left(2+3i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}

FOIL gives:

\dfrac{2+3i}{1-2i}=\dfrac{2+4i+3i+6i^2}{\left(1-2i\right)\left(1+2i\right)}

Since i^2=-1, we have:

\dfrac{2+3i}{1-2i}=\dfrac{2+4i+3i-6}{\left(1-2i\right)\left(1+2i\right)}

Furthermore, we know that \left(a+ib\right)\left(a-ib\right)=a^2+b^2. Therefore:

\dfrac{2+3i}{1-2i}=\dfrac{-4+7i}{1^2+2^2}=\dfrac{-4+7i}{5}

\dfrac{2+3i}{1-2i}=\dfrac{-4+7i}{5}

\dfrac{2-4i}{i}

Here we have:

  • z_1=2-4i
  • z_2=i

Therefore:

z_1\div z_2=\dfrac{2-4i}{i}

Multiply top and bottom by the conjugate of i :

\dfrac{2-4i}{i}=\dfrac{\left(2-4i\right)\left(-i\right)}{i\left(-i\right)}

FOIL gives:

\dfrac{2-4i}{i}=\dfrac{\left(2-4i\right)\left(-i\right)}{i\left(-i\right)}=\dfrac{-2i+4i^2}{-i^2}

Since i^2=-1, we have:

\dfrac{2-4i}{i}=\dfrac{-2i-4}{1}

\dfrac{2-4i}{i}=-4-2i

\dfrac{2-4i}{i}=-4-2i

\dfrac{1+2i}{1-i}

Here we have:

  • z_1=1+2i
  • z_2=1-i

Therefore:

z_1\div z_2=\dfrac{1+2i}{1-i}

Multiply top and bottom by the conjugate of 1-i :

\dfrac{1+2i}{1-i}=\dfrac{\left(1+2i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}

FOIL gives:

\dfrac{1+2i}{1-i}=\dfrac{1+2i+i+2i^2}{\left(1-i\right)\left(1+i\right)}

Since i^2=-1, we have:

\dfrac{1+2i}{1-i}=\dfrac{1+2i+i-2}{\left(1-i\right)\left(1+i\right)}

Furthermore, we know that \left(a+ib\right)\left(a-ib\right)=a^2+b^2. Therefore:

\dfrac{1+2i}{1-i}=\dfrac{-1+3i}{1^2+1^2}=\dfrac{-1+3i}{2}

\dfrac{1+2i}{1-i}=\dfrac{-1+3i}{2}

\dfrac{5+6i}{2-3i}

Here we have:

  • z_1=5-6i
  • z_2=2-3i

Therefore:

z_1\div z_2=\dfrac{5+6i}{2-3i}

Multiply top and bottom by the conjugate of 2-3i :

\dfrac{5+6i}{2-3i}=\dfrac{\left(5+6i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}

FOIL gives:

\dfrac{5+6i}{2-3i}=\dfrac{10+15i+12i+18i^2}{\left(2-3i\right)\left(2+3i\right)}

Since i^2=-1, we have:

\dfrac{5+6i}{2-3i}=\dfrac{10+27i-18}{\left(2-3i\right)\left(2+3i\right)}

Furthermore, we know that \left(a+ib\right)\left(a-ib\right)=a^2+b^2. Therefore:

\dfrac{5+6i}{2-3i}=\dfrac{-8+27i}{2^2+3^2}=\dfrac{-8+27i}{13}

\dfrac{5+6i}{2-3i}=\dfrac{-8+27i}{13}

\dfrac{7-2i}{5-2i}

Here we have:

  • z_1=7-2i
  • z_2=5-2i

Therefore:

z_1\div z_2=\dfrac{7-2i}{5-2i}

Multiply top and bottom by the conjugate of 5-2i :

\dfrac{7-2i}{5-2i}=\dfrac{\left(7-2i\right)\left(5+2i\right)}{\left(5-2i\right)\left(5+2i\right)}

FOIL gives:

\dfrac{7-2i}{5-2i}=\dfrac{35+14i-10i-4i^2}{\left(5-2i\right)\left(5+2i\right)}

Since i^2=-1, we have:

\dfrac{7-2i}{5-2i}=\dfrac{35+4i+4}{\left(5-2i\right)\left(5+2i\right)}

Furthermore, we know that \left(a+ib\right)\left(a-ib\right)=a^2+b^2. Therefore:

\dfrac{7-2i}{5-2i}=\dfrac{39+4i}{5^2+2^2}\dfrac{39+4i}{29}

\dfrac{7-2i}{5-2i}=\dfrac{39+4i}{29}

\dfrac{1+i}{1-i}

Here we have:

  • z_1=1+i
  • z_2=1-i

Therefore:

z_1\div z_2=\dfrac{1+i}{1-i}

Multiply top and bottom by the conjugate of 1-i :

\dfrac{1+i}{1-i}=\dfrac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}

FOIL gives:

\dfrac{1+i}{1-i}=\dfrac{1+i+i+i^2}{\left(1-i\right)\left(1+i\right)}

Since i^2=-1, we have:

\dfrac{1+i}{1-i}=\dfrac{1+2i-1}{\left(1-i\right)\left(1+i\right)}

Furthermore, we know that \left(a+ib\right)\left(a-ib\right)=a^2+b^2. Therefore:

\dfrac{1+i}{1-i}=\dfrac{2i}{1^2+1^2}=i

\dfrac{1+i}{1-i}=i

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Complex numbers
  • Exercise : Find the magnitude (or absolute value) of a complex number
  • Exercise : Multiply complex numbers
  • Exercise : Match points of the complex plan and complex numbers
  • Exercise : Find the complex roots of a quadratic using the discriminant
  • Exercise : Convert between any forms of complex numbers
  • support@kartable.com
  • Legal notice

© Kartable 2026