01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Determine whether a geometric series converge or diverge

Determine whether a geometric series converge or diverge Calculus

Determine whether the following series converge or diverge. If the series converges, then determine its sum.

\sum_{k=0}^{\infty}\left(-\dfrac{3}{4}\right)^k

A geometric series \sum_{k=0}^{\infty}r^k :

  • Converges if |r| \lt 1 and its sum is \dfrac{1}{1-r}.
  • Diverges if |r|\geq1.

Here we have:

|\dfrac{-3}{4}| \lt 1

Therefore:

\sum_{k=0}^{n}\left(-\dfrac{3}{4}\right)^k converges and the sum equals:

\dfrac{1}{1-\left(\dfrac{-3}{4}\right)}=\dfrac{1}{\dfrac{7}{4}}=\dfrac{4}{7}

\sum_{k=0}^{\infty}\left(-\dfrac{3}{4}\right)^k converges and its sum is \dfrac{4}{7}.

\sum_{k=0}^{\infty}\left(\dfrac{1}{2}\right)^k

A geometric series \sum_{k=0}^{\infty}r^k :

  • Converges if |r| \lt 1 and its sum is \dfrac{1}{1-r}.
  • Diverges if |r|\geq1.

Here we have:

|\dfrac{1}{2}| \lt 1

Therefore:

\sum_{k=0}^{\infty}\left(\dfrac{1}{2}\right)^k converges and the sum equals:

\dfrac{1}{1-\left(\dfrac{1}{2}\right)}=\dfrac{1}{\dfrac{1}{2}}=2

\sum_{k=0}^{\infty}\left(\dfrac{1}{2}\right)^k converges and the sum is 2.

\sum_{k=0}^{\infty}\left(\dfrac{3}{4}\right)^k

A geometric series \sum_{k=0}^{\infty}r^k :

  • Converges if |r| \lt 1 and its sum is \dfrac{1}{1-r}.
  • Diverges if |r|\geq1.

Here we have:

|\dfrac{3}{4}| \lt 1

Therefore:

\sum_{k=0}^{n}\left(\dfrac{3}{4}\right)^k converges and the sum equals:

\dfrac{1}{1-\left(\dfrac{3}{4}\right)}=\dfrac{1}{\dfrac{1}{4}}=4

\sum_{k=0}^{n}\left(\dfrac{3}{4}\right)^k converges and its sum equals 4.

\sum_{k=0}^{\infty}\left(-\dfrac{7}{4}\right)^k

A geometric series \sum_{k=0}^{\infty}r^k :

  • Converges if |r| \lt 1 and its sum is \dfrac{1}{1-r}.
  • Diverges if |r|\geq1.

Here we have:

|\dfrac{-7}{4}| \gt 1

Therefore:

\sum_{k=0}^{\infty}\left(-\dfrac{7}{4}\right)^k diverges.

\sum_{k=0}^{\infty}\left(-1\right)^k

A geometric series \sum_{k=0}^{\infty}r^k :

  • Converges if |r| \lt 1 and its sum is \dfrac{1}{1-r}.
  • Diverges if |r|\geq1.

Here we have:

|-1| \geq 1

Therefore:

\sum_{k=0}^{\infty}\left(-1\right)^k diverges.

\sum_{k=0}^{\infty}\left(-\dfrac{7}{8}\right)^k

A geometric series \sum_{k=0}^{\infty}r^k :

  • Converges if |r| \lt 1 and its sum is \dfrac{1}{1-r}.
  • Diverges if |r|\geq1.

Here we have:

|\dfrac{-7}{8}| \lt 1

Therefore:

\sum_{k=0}^{\infty}\left(-\dfrac{7}{8}\right)^k converges and the sum equals:

\dfrac{1}{1-\left(\dfrac{-7}{8}\right)}=\dfrac{1}{\dfrac{15}{16}}=\dfrac{16}{15}

\sum_{k=0}^{\infty}\left(-\dfrac{7}{8}\right)^k converges and its sum equals \dfrac{16}{15}.

\sum_{k=0}^{\infty}\left(\dfrac{1}{4}\right)^k

A geometric series \sum_{k=0}^{\infty}r^k :

  • Converges if |r| \lt 1 and its sum is \dfrac{1}{1-r}.
  • Diverges if |r|\geq1.

Here we have:

|\dfrac{1}{4}| \lt 1

Therefore:

\sum_{k=0}^{\infty}\left(\dfrac{1}{4}\right)^k converges and the sum equals:

\dfrac{1}{1-\left(\dfrac{1}{4}\right)}=\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}

\sum_{k=0}^{\infty}\left(\dfrac{1}{4}\right)^k converges and its sum is \dfrac{4}{3}.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Series
  • Exercise : Find the sum of consecutive terms of an arithmetic sequence
  • Exercise : Find the sum of consecutive terms of a geometric sequence
  • Exercise : Find the sum of consecutive integers
  • Exercise : Find the sum of consecutive squares
  • Exercise : Find the sum of consecutive cubes
  • support@kartable.com
  • Legal notice

© Kartable 2026