01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Find the sum of consecutive cubes

Find the sum of consecutive cubes Calculus

What is the value of the following sums?

\sum_{j=3}^{7}j^3

We have the following formula:

\sum_{j=1}^{n}j^3=\dfrac{n^2\left(n+1\right)^2}{4}

We notice that:

\sum_{j=3}^{7}j^3=\sum_{j=1}^{7}j^3-\sum_{j=1}^{2}j^3

We can apply the formula twice:

\sum_{j=3}^{7}j^3=\sum_{j=1}^{7}j^3-\sum_{j=1}^{2}j^3=\dfrac{7^2\cdot8^2}{4}-\dfrac{2^2\cdot3^2}{4}=784-9=775

\sum_{j=3}^{7}j^3=775

\sum_{j=0}^{15}j^3

We have the following formula:

\sum_{j=1}^{n}j^3=\dfrac{n^2\left(n+1\right)^2}{4}

Since 0^3 adds nothing to the sum, we notice that:

\sum_{j=0}^{15}j^3=\sum_{j=1}^{15}j^3

And:

\sum_{j=1}^{15}j^3=\dfrac{15^2\left(15+1\right)^2\right)}{4}

Therefore:

\sum_{j=0}^{15}j^3=\dfrac{15^2\left(15+1\right)^2\right)}{4}=14{,}400

\sum_{j=0}^{15}j^3=14{,}400

\sum_{j=-10}^{10}j^3

We have the following formula:

\sum_{j=1}^{n}j^3=\dfrac{n^2\left(n+1\right)^2}{4}

Since adding 0^3 has no effect on the sum, we notice that:

\sum_{j=-10}^{10}j^3=\sum_{j=-10}^{-1}j^3+ \sum_{j=1}^{10}j^3

Additionally, since \left(-j\right)^3=-j^3 we have:

\sum_{j=-10}^{-1}j^2=- \sum_{j=1}^{10}j^2

Therefore:

\sum_{j=-10}^{10}j^3=\sum_{j=1}^{10}j^3-\sum_{j=1}^{10}j^3=0

\sum_{j=-10}^{10}j^3=0

\sum_{j=10}^{25}j^2

We have the following formula:

\sum_{j=1}^{n}j^3=\dfrac{n^2\left(n+1\right)^2}{4}

We notice that:

\sum_{j=10}^{25}j^3=\sum_{j=1}^{25}j^3- \sum_{j=1}^{9}j^3

We can apply the formula twice:

\sum_{j=1}^{25}j^3=\sum_{j=1}^{25}j^3- \sum_{j=1}^{9}j^3=\dfrac{25^2\cdot26^2}{4}-\dfrac{9^2\cdot10^2}{4}

Therefore:

\sum_{j=10}^{25}j^3=105{,}625-2{,}025=103{,}600

\sum_{j=10}^{25}j^3=103{,}600

\sum_{j=5}^{k_1}j^3 with k_1 \gt 5

We have the following formula:

\sum_{j=1}^{n}j^3=\dfrac{n^2\left(n+1\right)^2}{4}

We notice that:

\sum_{j=5}^{k_1}j^3=\sum_{j=1}^{k_1}j^3- \sum_{j=1}^{4}j^3

We can apply the formula twice:

\sum_{j=5}^{k_1}j^3=\sum_{j=1}^{k_1}j^3- \sum_{j=1}^{4}j^3=\dfrac{k_1^2\cdot\left(k_1+1\right)^2}{4}-\dfrac{4^2\cdot5^2}{4}

Therefore:

\sum_{j=5}^{k_1}j^3=\dfrac{k_1^2\cdot\left(k_1+1\right)^2}{4}-\dfrac{4^2\cdot5^2}{4}

\sum_{j=5}^{k_1}j^3=\dfrac{k_1^2\cdot\left(k_1+1\right)^2-400}{4}

\sum_{j=-4}^{k_1}j^2 with k_1 \gt 0

We have the following formula:

\sum_{j=1}^{n}j^3=\dfrac{n^2\left(n+1\right)^2}{4}

Since the 0^3 term adds nothing to the sum, it can be removed. We notice that:

\sum_{j=-4}^{k_1}j^3=\sum_{j=1}^{k_1}j^3+ \sum_{j=-4}^{-1}j^3

Since -j^3=\left(-j\right)^3 we have:

\sum_{j=-4}^{-1}j^2=-\sum_{j=1}^{4}j^2

We can apply the formula twice:

\sum_{j=-4}^{k_1}j^3=\sum_{j=1}^{k_1}j^3- \sum_{j=1}^{4}j^3=\dfrac{k_1^2\cdot\left(k_1+1\right)^2}{4}-\dfrac{4^2\cdot5^2}{4}

Therefore:

\sum_{j=-4}^{k_1}j^3=\dfrac{k_1^2\cdot\left(k_1+1\right)^2-400}{4}

\sum_{j=-4}^{k_1}j^3=\dfrac{k_1^2\cdot\left(k_1+1\right)^2-400}{4}

\sum_{j=k_1}^{k_2}j^3 with 0 \lt k_1 \lt k_2

We have the following formula:

\sum_{j=1}^{n}j^3=\dfrac{n^2\left(n+1\right)^2}{4}

We notice that:

\sum_{j=k_1}^{k_2}j^3=\sum_{j=1}^{k_2}j^3- \sum_{j=1}^{k_1}j^3

We can apply the formula twice:

\sum_{j=k_1}^{k_2}j^3=\sum_{j=1}^{k_2}j^3- \sum_{j=1}^{k_1}j^3=\dfrac{k_2^2\left(k_2+1\right)^2}{4}-\dfrac{k_1^2\left(k_1+1\right)^2}{4}

\sum_{j=k_1}^{k_2}j^3=\dfrac{k_2^2\left(k_2+1\right)^2}{4}-\dfrac{k_1^2\left(k_1+1\right)^2}{4}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Series
  • Exercise : Find the sum of consecutive terms of an arithmetic sequence
  • Exercise : Find the sum of consecutive terms of a geometric sequence
  • Exercise : Find the sum of consecutive integers
  • Exercise : Find the sum of consecutive squares
  • Exercise : Determine whether a geometric series converge or diverge
  • support@kartable.com
  • Legal notice

© Kartable 2026