01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Find the sum of consecutive squares

Find the sum of consecutive squares Calculus

What is the value of the following sums?

\sum_{j=2}^{9}j^2

We know that:

\sum_{j=1}^{n}j^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}

Observe that:

\sum_{j=2}^{9}j^2=\sum_{j=1}^{9}j^2- \sum_{j=1}^{1}j^2

Therefore:

\sum_{j=2}^{9}j^2=\sum_{j=1}^{9}j^2- \sum_{j=1}^{1}j^2=\dfrac{9\cdot10\cdot19}{6}-\dfrac{1\cdot2\cdot3}{6}

\sum_{j=2}^{9}j^2=285-1=284

\sum_{j=2}^{9}j^2=284

\sum_{j=0}^{15}j^2

We know that:

\sum_{j=1}^{n}j^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}

Observe that:

\sum_{j=0}^{15}j^2=\sum_{j=1}^{15}j^2 since 0^2 adds nothing to the sum.

Therefore:

\sum_{j=0}^{15}j^2=\sum_{j=1}^{15}j^2=\dfrac{15\left(15+1\right)\left(2\cdot 15+1\right)}{6}

\sum_{j=0}^{15}j^2=\dfrac{\left(15\cdot 16\right) \cdot31}{6}

\sum_{j=0}^{15}j^2=1\ 240

\sum_{j=-10}^{10}j^2

We know that:

\sum_{j=1}^{n}j^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}

Observe that:

\sum_{j=-10}^{10}j^2=\sum_{j=-10}^{-1}j^2+ \sum_{j=1}^{10}j^2 since 0^2 has no effect on the sum.

Additionally,

\sum_{j=-10}^{-1}j^2= \sum_{j=1}^{10}j^2 since the square of a number is the same as the square of is opposite.

Therefore:

\sum_{j=-10}^{10}j^2=2\sum_{j=1}^{10}j^2=2\cdot\dfrac{10\cdot11\cdot21}{6}

\sum_{j=-10}^{10}j^2=770

\sum_{j=10}^{25}j^2

We know that:

\sum_{j=1}^{n}j^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}

Observe that:

\sum_{j=10}^{25}j^2=\sum_{j=1}^{25}j^2- \sum_{j=1}^{9}j^2

Therefore:

\sum_{j=1}^{25}j^2=\sum_{j=1}^{25}j^2- \sum_{j=1}^{9}j^2=\dfrac{25\cdot26\cdot51}{6}-\dfrac{9\cdot10\cdot19}{6}

\sum_{j=10}^{25}j^2=5\ 525-285

\sum_{j=10}^{25}j^2=4\ 943

\sum_{j=5}^{k_1}j^2 with k_1 \gt 0

We know that:

\sum_{j=1}^{n}j^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}

Observe that:

\sum_{j=5}^{k_1}j^2=\sum_{j=1}^{k_1}j^2- \sum_{j=1}^{4}j^2

Therefore:

\sum_{j=5}^{k_1}j^2=\sum_{j=1}^{k_1}j^2- \sum_{j=1}^{4}j^2=\dfrac{k_1\cdot\left(k_1+1\right)\cdot\left(2k_1+1\right)}{6}-\dfrac{4\cdot5\cdot9}{6}

\sum_{j=5}^{k_1}j^2=\dfrac{k_1\cdot\left(k_1+1\right)\cdot\left(2k_1+1\right)}{6}-30

\sum_{j=5}^{k_1}j^2=\dfrac{2k_1^3+3k_1^2+k_1-180}{6}

\sum_{j=-4}^{k_1}j^2 with k_1 \gt 0

We know that:

\sum_{j=1}^{n}j^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}

Since the 0^2 term adds nothing to the sum, it can be removed:

\sum_{j=-4}^{k_1}j^2=\sum_{j=1}^{k_1}j^2+ \sum_{j=-4}^{-1}j^2

Since j^2=\left(-j\right)^2 :

\sum_{j=-4}^{-1}j^2=\sum_{j=1}^{4}j^2

Therefore:

\sum_{j=-4}^{k_1}j^2=\sum_{j=1}^{k_1}j^2+ \sum_{j=1}^{4}j^2=\dfrac{k_1\cdot\left(k_1+1\right)\cdot\left(2k_1+1\right)}{6}+\dfrac{4\cdot5\cdot9}{6}

\sum_{j=-4}^{k_1}j^2=\dfrac{k_1\cdot\left(k_1+1\right)\cdot\left(2k_1+1\right)}{6}+30

\sum_{j=-4}^{k_1}j^2=\dfrac{2k_1^3+3k_1^2+k_1+180}{6}

\sum_{j=k_1}^{k_2}j^2 with 0 \lt k_1 \lt k_2

We know that:

\sum_{j=1}^{n}j^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}

Since the 0^2 term adds nothing to the sum, it can be removed:

\sum_{j=k_1}^{k_2}j^2=\sum_{j=1}^{k_2}j^2- \sum_{j=1}^{k_1}j^2

Therefore:

\sum_{j=k_1}^{k_2}j^2=\sum_{j=1}^{k_2}j^2- \sum_{j=1}^{k_1}j^2=\dfrac{k_2\cdot\left(k_2+1\right)\cdot\left(2k_2+1\right)}{6}-\dfrac{k_1\cdot\left(k_1+1\right)\cdot\left(2k_1+1\right)}{6}

\sum_{j=k_1}^{k_2}j^2=\dfrac{2\left(k_2^3-k_1^3\right)+3\left(k_2^2-k_1^2\right)+k_2-k_1}{6}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Series
  • Exercise : Find the sum of consecutive terms of an arithmetic sequence
  • Exercise : Find the sum of consecutive terms of a geometric sequence
  • Exercise : Find the sum of consecutive integers
  • Exercise : Find the sum of consecutive cubes
  • Exercise : Determine whether a geometric series converge or diverge
  • support@kartable.com
  • Legal notice

© Kartable 2026