01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Find the sum of consecutive integers

Find the sum of consecutive integers Calculus

What is the value of the following sums?

\sum_{i=4}^{11}i

We have the following formula:

\sum_{i=1}^{n}i=\dfrac{n\left(n+1\right)}{2}

We notice that:

\sum_{i=4}^{11}i=\sum_{i=1}^{11}i-\sum_{i=1}^{3}i

Therefore:

\sum_{i=4}^{11}i=\sum_{i=1}^{11}i-\sum_{i=1}^{3}i=\dfrac{11\left(12\right)}{2}-\dfrac{3\left(4\right)}{2}=66-6=60

\sum_{i=4}^{11}i=60

\sum_{i=10}^{50}i

We have the following formula:

\sum_{i=1}^{n}i=\dfrac{n\left(n+1\right)}{2}

We notice that:

\sum_{i=10}^{50}i=\sum_{i=1}^{50}i-\sum_{i=1}^{9}i

Therefore:

\sum_{i=10}^{50}i=\sum_{i=1}^{50}i-\sum_{i=1}^{9}i=\dfrac{50\left(51\right)}{2}-\dfrac{9\left(10\right)}{2}=1\ 275-45=1\ 230

\sum_{i=10}^{50}i=1\ 230

\sum_{i=5}^{150}i

We have the following formula:

\sum_{i=1}^{n}i=\dfrac{n\left(n+1\right)}{2}

We notice that:

\sum_{i=5}^{150}i=\sum_{i=1}^{150}i-\sum_{i=1}^{4}i

Therefore:

\sum_{i=5}^{150}i=\sum_{i=1}^{150}i-\sum_{i=1}^{4}i=\dfrac{150\left(151\right)}{2}-\dfrac{4\left(5\right)}{2}=11{,}325-10=11{,}315

\sum_{i=5}^{150}i=11{,}315

\sum_{i=-10}^{100}i

We have the following formula:

\sum_{i=1}^{n}i=\dfrac{n\left(n+1\right)}{2} where n \gt 0

We notice that:

\sum_{i=-10}^{100}i=\sum_{i=-10}^{0}i-\sum_{i=1}^{100}i

We can remove the i=0 term in the sum since adding zero does not affect the sum.

Additionally,

\sum_{i=-10}^{-1}i=-\sum_{i=1}^{10}i

Therefore:

\sum_{i=-10}^{100}i=\sum_{i=1}^{100}i+\sum_{i=-10}^{-1}i=\sum_{i=1}^{100}i-\sum_{i=1}^{10}i=\dfrac{100\left(101\right)}{2}-\dfrac{10\left(11\right)}{2}=5\ 050-55

\sum_{i=-10}^{100}i=4\ 995

\sum_{i=1}^{k_1}i

We have the following formula:

\sum_{i=1}^{n}i=\dfrac{n\left(n+1\right)}{2}

By substituting n=k_1 :

\sum_{i=1}^{k_1}i=\dfrac{k_1\left(k_1+1\right)}{2}

\sum_{i=5}^{k_1}i

We have the following formula:

\sum_{i=1}^{n}i=\dfrac{n\left(n+1\right)}{2}

We notice that:

\sum_{i=5}^{k_1}i=\sum_{i=1}^{k_1}i-\sum_{i=1}^{4}i

Therefore:

\sum_{i=5}^{k_1}i=\sum_{i=1}^{k_1}i-\sum_{i=1}^{4}i=\dfrac{k_1\left(k_1+1\right)}{2}-\dfrac{4\left(5\right)}{2}

\sum_{i=5}^{k_1}i=\dfrac{k_1\left(k_1+1\right)}{2}-10

\sum_{i=k_1}^{100}i, 0 \lt k_1 \lt 100

We have the following formula:

\sum_{i=1}^{n}i=\dfrac{n\left(n+1\right)}{2}

We notice that:

\sum_{i=k_1}^{100}i=\sum_{i=1}^{100}i-\sum_{i=1}^{k_1}i

Therefore:

\sum_{i=k_1}^{100}i=\sum_{i=1}^{100}i-\sum_{i=1}^{k_1}i=\dfrac{100\left(101\right)}{2}-\dfrac{k_1\left(k_1+1\right)}{2}

\sum_{i=k_1}^{100}i=5\ 050-\dfrac{k_1\left(k_1+1\right)}{2}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Series
  • Exercise : Find the sum of consecutive terms of an arithmetic sequence
  • Exercise : Find the sum of consecutive terms of a geometric sequence
  • Exercise : Find the sum of consecutive squares
  • Exercise : Find the sum of consecutive cubes
  • Exercise : Determine whether a geometric series converge or diverge
  • support@kartable.com
  • Legal notice

© Kartable 2026