01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Find the derivative of a function at a certain point using the difference quotient formula

Find the derivative of a function at a certain point using the difference quotient formula Calculus

Find the following derivatives using the difference quotient formula.

f : x \longmapsto \dfrac{2x^2}{1-x} for x=0

A function f is differentiable at x = a if and only if there is a real number l such that:

\lim\limits_{h \to 0}\dfrac{f\left(a + h\right) - f\left(a\right)}{h}=l

Thus:

f'\left(a\right) = l

Here, we have:

f\left(x\right)= \dfrac{2x^2}{1-x}

Therefore:

For all h\notin\{0{,}1\},

\dfrac{f\left(0+h\right)-f\left(0\right)}{h}=\dfrac{\dfrac{2\left(0+h\right)^2}{1-\left(0+h\right)}-\dfrac{2\left(0\right)^2}{1-\left(0\right)}}{h}= \dfrac{\dfrac{2h^2}{1-h} - 0}{h} = \dfrac{2h}{1-h}

And:

\lim\limits_{h \rightarrow 0} \dfrac{2h}{1-h} = \dfrac{2\left(0\right)}{1-0} = \dfrac{0}{1} = 0

f is differentiable for x=0 and f'\left(0\right)=0.

f : x \mapsto \dfrac{2x^2 + 1}{3x^2 + 2} for x=0

A function f is differentiable at x = a if and only if there is a real number l such that:

\lim\limits_{h \to 0}\dfrac{f\left(a + h\right) - f\left(a\right)}{h}=l

Thus

f'\left(a\right) = l

Here, we have:

f\left(x\right) = \dfrac{2x^2 + 1}{3x^2 + 2}

Therefore:

For all h\neq 0,

\dfrac{f\left(0+h\right) - f\left(0\right)}{h} =\dfrac{\dfrac{2\left(0+h\right)^2 + 1}{3\left(0+h\right)^2 + 2} - \dfrac{2\left(0\right)^2 + 1}{3\left(0\right)^2 + 2}}{h} = \dfrac{\dfrac{2h^2 + 1}{3h^2 + 2} - \dfrac{1}{2}}{h} = \dfrac{\dfrac{2\left(2h^2 + 1\right) - \left(3h^2 + 2\right)}{2\left(3h^2 + 2\right)}}{h} = \dfrac{\dfrac{h^2}{2\left(3h^2 + 2\right)}}{h} = \dfrac{h}{2\left(3h^2 + 2\right)}

And:

\lim\limits_{h \rightarrow 0} \dfrac{h}{2\left(3h^2 + 2\right)} = \dfrac{\left(0\right)}{2\left(3\left(0\right)^2 + 2\right)} = \dfrac{0}{4} = 0

f is differentiable for x=0 and f'\left(0\right)=0.

f : x \longmapsto \dfrac{x}{x^2+1} for x=1

A function f is differentiable at x = a if and only if there is a real number l such that:

\lim\limits_{h \to 0}\dfrac{f\left(a + h\right) - f\left(a\right)}{h}=l

Thus:

f'\left(a\right) = l

Here, we have:

f\left(x\right) = \dfrac{x}{x^2 + 1}

Therefore:

For all h\neq 0,

\dfrac{f\left(1+h\right) - f\left(1\right)}{h} = \dfrac{\dfrac{1 + h}{\left(1+h\right)^2 + 1} - \dfrac{1}{1^2 + 1}}{h} = \dfrac{2\left(h+1\right) - \left(h^2 + 2h + 2\right)}{2h\left(h^2 + 2h + 2\right)}= \dfrac{2h + 2 - h^2 - 2h - 2}{2h\left(h^2 + 2h + 2\right)} = \dfrac{-h}{2\left(h^2 + 2h + 2\right)}

And:

\lim\limits_{h \rightarrow 0} \dfrac{-h}{2\left(h^2 + 2h + 2\right)} = \dfrac{0}{2\left(0 +0 + 2\right)} = 0

f is differentiable for x=1 and f'\left(1\right) = -0.1.

f : x \mapsto 2x^2 + 2x + 6 for x=-2

A function f is differentiable at x = a if and only if there is a real number l such that:

\lim\limits_{h \to 0}\dfrac{f\left(a + h\right) - f\left(a\right)}{h}=l

Thus:

f'\left(a\right) = l

Here we have:

f\left(x\right) = 2x^2 + 2x + 6

Therefore:

For all h\neq 0,

\dfrac{f\left(-2+h\right) - f\left(-2\right)}{h} = \dfrac{2\left(-2 + h\right)^2 + 2\left(-2 + h\right) + 6 - \left( 2\left(-2\right)^2 + 2\left(-2\right) + 6 \right)}{h} = \dfrac{2h^2 - 8h + 8 + 2h - 4 + 6 - 8 + 4 - 6}{h} = \dfrac{\left(8 - 8\right) + \left(6 - 6\right) + \left(4 - 4\right) + 2h^2 - 6h}{h} = \dfrac{2h^2 - 6h}{h} = 2h - 6\\

And:

\lim\limits_{h \rightarrow 0} \left( 2h - 6 \right) = 2\left(0\right) - 6 = -6

f is differentiable for x = -2 and f'\left(0\right) = -6.

f : x \mapsto x^2 - 4x + 6 for x=2

A function f is differentiable at x = a if and only if there is a real number l such that:

\lim\limits_{h \to 0}\dfrac{f\left(a + h\right) - f\left(a\right)}{h}=l

Thus:

f'\left(a\right) = l

Here, we have:

f\left(x\right) = x^2 - 4x + 6

Therefore:

For all h\neq 0,

\dfrac{f\left(2+h\right) - f\left(2\right)}{h} = \dfrac{\left( \left(2+h\right)^2 - 4\left(2+h\right) + 6 \right) - \left( \left(2\right)^2 - 4\left(2\right) + 6 \right)}{h} = \dfrac{4 + 4h + h^2 - 8 - 4h + 6 - 4 + 8 - 6}{h} = \dfrac{\left(4 - 4\right) + \left(8 - 8\right) + \left(6 - 6\right) + \left(4h - 4h\right) + h^2}{h} = \dfrac{h^2}{h} = h

And:

\lim\limits_{h \rightarrow 0} h = 0

f is differentiable for x = 2 and f'\left(2\right) = 0.

f : x \mapsto \dfrac{\left(x + 2\right)^2 + 3}{x - 3} for x=-3

A function f is differentiable at x = a if and only if there is a real number l such that:

\lim\limits_{h \to 0}\dfrac{f\left(a + h\right) - f\left(a\right)}{h}=l

Thus:

f'\left(a\right) = l

Here, we have:
f\left(x\right) = \dfrac{\left(x + 2\right)^2 + 3}{x - 3}

Therefore:

For all h\notin\{0{,}6\},

\dfrac{f\left(-3+h\right) - f\left(-3\right)}{h} = \dfrac{\dfrac{\left(-3 + h + 2\right)^2 + 3}{-3 + h - 3} - \dfrac{\left(-3 + 2\right)^2 + 3}{-3 - 3}}{h} = \dfrac{\dfrac{\left(h - 1\right)^2 + 3}{h - 6} - \dfrac{\left(-1\right)^2 + 3}{-6}}{h} = \dfrac{3\left(h^2 - 2h + 4\right) + 2h - 12}{h\left(3h - 18\right)} = \dfrac{3h^2 - 4h}{h\left(3h - 18\right)} = \dfrac{3h - 4}{3h - 18}

And:

\lim\limits_{h \rightarrow 0} \dfrac{3h^2 - 4}{3h - 18} = \dfrac{0 - 4}{0 - 18} = \dfrac{2}{9}

f is differentiable for x = -3 and f'\left(-3\right) = \dfrac{2}{9}.

f : x \mapsto \dfrac{5-x}{10-3x^2} for x=0

A function f is differentiable at x = a if and only if there is a real number l such that:

\lim\limits_{h \to 0}\dfrac{f\left(a + h\right) - f\left(a\right)}{h}=l

Thus:

f'\left(a\right) = l

Here, we have:

f \left(x\right) = \dfrac{5-x}{10-3x^2}

Therefore:

For all h\notin\left\{0,\sqrt{\dfrac{10}{3}},-\sqrt{\dfrac{10}{3}}\right\},

\dfrac{f\left(0+h\right) - f\left(0\right)}{h} = \dfrac{\dfrac{5-\left(0+h\right)}{10-3\left(0+h\right)^2} - \dfrac{5-0}{10-3\left(0\right)^2}}{h} = \dfrac{\dfrac{5-h}{10-3h^2} - \dfrac{5}{10}}{h} = \dfrac{\left(5-h\right)\left(2\right) - \left(1\right)\left(10-3h^2\right)}{h\left(2\right)\left(10-3h^2\right)} = \dfrac{10 - 2h - 10 + 3h^2}{2h\left(10-3h^2\right)} = \dfrac{3h - 2}{2\left(10-3h^2\right)}

And:

\lim\limits_{h \rightarrow 0} \dfrac{3h - 2}{2\left(10-3h^2\right)} = \dfrac{-2}{2\left(10\right)} = \dfrac{-1}{10}

f is differentiable for x = 0 and f'\left(0\right) = -0.1.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Introduction to derivatives
  • Exercise : Find the derivative of a power function
  • Exercise : Find the derivative of an exponential function
  • Exercise : Find the derivative of a logarithmic function
  • Exercise : Find the derivative of a trigonometric function
  • Exercise : Find the derivative of a function of the form x -> a.f(x)+g(x)
  • Exercise : Find the derivative of a function of the form x -> f(x).g(x)
  • Exercise : Find the derivative of a function of the form x -> f(x)/g(x)
  • Exercise : Find the derivative of the inverse of a function
  • support@kartable.com
  • Legal notice

© Kartable 2026