01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Find the derivative of a trigonometric function

Find the derivative of a trigonometric function Calculus

Find the derivative of the following functions.

f:x\longmapsto 3\cos\left(x\right)

The derivative of a cosine function is:

\dfrac{d}{dx}\cos\left(f\left(x\right)\right) = -f'\left(x\right)\sin\left(f\left(x\right)\right)

Therefore:

\dfrac{d}{dx}\left[3\cos\left(x\right)\right]= 3\dfrac{d}{dx}\left[\cos\left(x\right)\right]=3\left(-\dfrac{d}{dx}x\right)\sin\left(x\right)=-3\sin\left(x\right)

For any x \in \mathbb{R} , f is differentiable and f'\left(x\right) = -3\sin\left(x\right)

f : x \longmapsto \sin\left(3x + 2\right)

The derivative of a sine function is:

\dfrac{d}{dx}\sin\left(f\left(x\right)\right) = f'\left(x\right)\cos\left(f\left(x\right)\right)

Therefore:

\dfrac{d}{dx}\left[ \sin\left(3x + 2\right) \right]=\left[ \dfrac{d}{dx}\left(3x + 2\right) \right]\cos\left(3x + 2\right)=3\cos\left(3x + 2\right)

For any x \in \mathbb{R} , f is differentiable and f'\left(x\right) = 3\cos\left(3x + 2\right)

f : x \longmapsto \cos\left(\sin\left(x\right)\right)

The derivatives of a sine and cosine function are, respectively:

\dfrac{d}{dx}\sin\left(f\left(x\right)\right) = f'\left(x\right)\cos\left(f\left(x\right)\right)

\dfrac{d}{dx}\cos\left(f\left(x\right)\right) = -f'\left(x\right)\sin\left(f\left(x\right)\right)

Therefore:

\dfrac{d}{dx}\left[ \cos\left(\sin\left(x\right)\right) \right]=-\left[\dfrac{d}{dx}\sin\left(x\right) \right]\sin\left(\sin\left(x\right)\right)=-\cos\left(x\right)\sin\left(\sin\left(x\right)\right)

For any x \in \mathbb{R} , f is differentiable and f'\left(x\right) = -\cos\left(x\right)\sin\left(\sin\left(x\right)\right)

x \longmapsto -6\tan\left(\dfrac{1}{3}x\right)

The tangent can be expressed as the quotient of sine and cosine:

\dfrac{d}{dx}\tan\left(f\left(x\right)\right) = \dfrac{d}{dx}\dfrac{\sin\left(f\left(x\right)\right)}{\cos\left(f\left(x\right)\right)} for any real x such that f\left(x\right) \neq \dfrac{\pi}{2}+n\pi (where n is a non-zero integer)

Then, with the formula for the derivative of a quotient:

\dfrac{d}{dx}\tan\left(f\left(x\right)\right) = \dfrac{\dfrac{d}{dx}\left[\sin\left(f\left(x\right)\right)\right] \cos\left(f\left(x\right)\right) - \sin\left(f\left(x\right)\right) \dfrac{d}{dx}\left[\cos\left(f\left(x\right)\right)\right]}{\cos\left(f\left(x\right)\right)^2}

Finally:

\dfrac{d}{dx}\tan\left(f\left(x\right)\right) = \dfrac{f'\left(x\right) \left(\cos^2\left(f\left(x\right)\right) + \sin^2\left(f\left(x\right)\right)\right)}{\cos\left(f\left(x\right)\right)^2} = \dfrac{f'\left(x\right)}{\cos\left(f\left(x\right)\right)^2}

The derivative of a tangent function is then:

\dfrac{d}{dx}\tan\left(f\left(x\right)\right) = f'\left(x\right)\sec^{2}\left(f\left(x\right)\right)

Where:
\sec\left(x\right) = \dfrac{1}{\cos\left(x\right)}.

Therefore for any real x such that \dfrac{x}{3}\neq \dfrac{\pi}{2}+n\pi i.e. x\neq\left(\dfrac{3}{2}+3n\right)\pi (where n is a non-zero integer):

\dfrac{d}{dx}\left[ -6\tan\left(\dfrac{1}{3}x\right) \right]=-6\left[ \dfrac{d}{dx}\left(\dfrac{1}{3}x\right) \right]\sec^{2}\left(\dfrac{1}{3}x\right)=-6\left(\dfrac{1}{3}\right)\sec^{2}\left(\dfrac{1}{3}x\right)=-2\sec^{2}\left(\dfrac{1}{3}x\right)

For any real x such that x\neq\left(\dfrac{3}{2}+3n\right)\pi (where n is a non-zero integer), f is differentiable and f'\left(x\right) = -2\sec^{2}\left(\dfrac{1}{3}x\right)

f : x \longmapsto \cos^2\left(3x\right)

The derivatives of a sin and cosine function are:

\dfrac{d}{dx}\sin\left(f\left(x\right)\right) = f'\left(x\right)\cos\left(f\left(x\right)\right)

\dfrac{d}{dx}\cos\left(f\left(x\right)\right) = -f'\left(x\right)\sin\left(f\left(x\right)\right)

Also:

\dfrac{d}{dx}f^2\left(x\right) = 2f'\left(x\right)f\left(x\right)

Therefore:

\dfrac{d}{dx}\left[ \cos^2\left(3x\right) \right]

=2\left[ \dfrac{d}{dx}\cos\left(3x\right) \right] \left[ \cos\left(3x\right) \right]

=2\left[ \right[\dfrac{d}{dx}\left(3x\right)\left] \left(-\sin\left(3x\right)\right) \right] \left[ \cos\left(3x\right) \right]

=-2\left[ 3\sin\left(3x\right) \right] \left[ \cos\left(3x\right) \right]=-6\sin\left(3x\right)\cos\left(3x\right)

For any x \in \mathbb{R} , f is differentiable and f'\left(x\right) = -6\sin\left(3x\right)\cos\left(3x\right)

f : x \longmapsto \dfrac{1}{5}\tan\left(-4x\right)

The tangent can be expressed as the quotient of sine and cosine:

\dfrac{d}{dx}\tan\left(f\left(x\right)\right) = \dfrac{d}{dx}\dfrac{\sin\left(f\left(x\right)\right)}{\cos\left(f\left(x\right)\right)} for any real x such that f\left(x\right) \neq \dfrac{\pi}{2}+n\pi (where n is a non-zero integer)

Then, with the formula for the derivative of a quotient:

\dfrac{d}{dx}\tan\left(f\left(x\right)\right) = \dfrac{\dfrac{d}{dx}\left[\sin\left(f\left(x\right)\right)\right] \cos\left(f\left(x\right)\right) - \sin\left(f\left(x\right)\right) \dfrac{d}{dx}\left[\cos\left(f\left(x\right)\right)\right]}{\cos\left(f\left(x\right)\right)^2}

Finally:

\dfrac{d}{dx}\tan\left(f\left(x\right)\right) = \dfrac{f'\left(x\right) \left(\cos^2\left(f\left(x\right)\right) + \sin^2\left(f\left(x\right)\right)\right)}{\cos\left(f\left(x\right)\right)^2} = \dfrac{f'\left(x\right)}{\cos\left(f\left(x\right)\right)^2}

The derivative of a tangent function is then:

\dfrac{d}{dx}\tan\left(f\left(x\right)\right) = \dfrac{f'\left(x\right)}{\cos\left(f\left(x\right)\right)^2} = f'\left(x\right)\sec^{2}\left(f\left(x\right)\right)

Where:

\sec\left(x\right) = \dfrac{1}{\cos\left(x\right)}

Therefore, for any real x such that -4x \neq \dfrac{\pi}{2}+n\pi i.e. x\neq -\left(\dfrac{1}{8}+\dfrac{n}{4}\right)\pi (where n is a non-zero integer):

\dfrac{d}{dx}\left[ \dfrac{1}{5}\tan\left(-4x\right) \right]=\dfrac{1}{5}\left[ \dfrac{d}{dx}\left(-4x\right) \right]\sec^{2}\left(-4x\right)

\dfrac{d}{dx}\left[ \dfrac{1}{5}\tan\left(-4x\right) \right]=\dfrac{1}{5}\left(-4\right)\sec^{2}\left(-4x\right)

\dfrac{d}{dx}\left[ \dfrac{1}{5}\tan\left(-4x\right) \right]=\dfrac{-4}{5}\sec^{2}\left(-4x\right)

And since \sec^{2}\left(a\right) = \sec^{2}\left(-a\right), where a is a real number:

\dfrac{-4}{5}\sec^{2}\left(-4x\right) = \dfrac{-4}{5}\sec^{2}\left(4x\right)

For any real x such that x\neq -\left(\dfrac{1}{8}+\dfrac{n}{4}\right)\pi (where n is a non-zero integer), f is differentiable and f'\left(x\right) = \dfrac{-4}{5}\sec^{2}\left(4x\right)

f : x \longmapsto \dfrac{1}{2}\sin\left(6x^2\right)

The derivative of a sine function is:

\dfrac{d}{dx}\sin\left(f\left(x\right)\right) = f'\left(x\right)\cos\left(f\left(x\right)\right)

Therefore:

\dfrac{d}{dx}\left[ \dfrac{1}{2}\sin\left(6x^2\right) \right]

=\dfrac{1}{2}\left[ \dfrac{d}{dx}\left(6x^2\right) \right]\cos\left(6x^2\right)
=\dfrac{1}{2}\left(12x\right)\cos\left(6x^2\right)

=6x\cos\left(6x^2\right)

For any x \in \mathbb{R} , f is differentiable and f'\left(x\right) = 6x\cos\left(6x^2\right)

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Introduction to derivatives
  • Exercise : Find the derivative of a function at a certain point using the difference quotient formula
  • Exercise : Find the derivative of a power function
  • Exercise : Find the derivative of an exponential function
  • Exercise : Find the derivative of a logarithmic function
  • Exercise : Find the derivative of a function of the form x -> a.f(x)+g(x)
  • Exercise : Find the derivative of a function of the form x -> f(x).g(x)
  • Exercise : Find the derivative of a function of the form x -> f(x)/g(x)
  • Exercise : Find the derivative of the inverse of a function
  • support@kartable.com
  • Legal notice

© Kartable 2026