01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Find the derivative of the inverse of a function

Find the derivative of the inverse of a function Calculus

Find the derivative of the inverse of the following functions using the inverse function rule.

f:x\longmapsto3x-1

The derivative of the inverse of a function f\left(x\right) is:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

The inverse of a function can be found by swapping x and f\left(x\right) and solving for f\left(x\right) :

f\left(x\right) = 3x - 1

x = 3 \cdot f^{-1}\left(x\right) - 1

3 \cdot f^{-1}\left(x\right) = x + 1

f^{-1}\left(x\right) = \dfrac{1}{3}x + \dfrac{1}{3}

This function is invertible.

The derivative of f\left(x\right) is:

\dfrac{d}{dx}f\left(x\right) = \dfrac{d}{dx}\left(3x - 1\right)

f'\left(x\right) = \dfrac{d}{dx}\left(3x\right) - \dfrac{d}{dx}\left(1\right)

f'\left(x\right) = 3 - 0

f'\left(x\right) = 3

Now the formula for the derivative of the inverse of f\left(x\right) can be used:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{3}

f^{-1} is differentiable for any x \in \mathbb{R} and \left[f^{-1}\right]'\left(x\right) = \dfrac{1}{3}

f : x \longmapsto \dfrac{2}{3}x^2 + 5 on x \geq 5

The derivative of the inverse of a function f\left(x\right) is:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

The inverse of a function can be found by swapping x and f\left(x\right) and solving for f\left(x\right) :

f\left(x\right) = \dfrac{2}{3}x^2 + 5

x = \dfrac{2}{3}\left(f^{-1}\left(x\right)\right)^2 + 5

\dfrac{2}{3}\left(f^{-1}\left(x\right)\right)^2 = x - 5

\left(f^{-1}\left(x\right)\right)^2 = \dfrac{3}{2}\left(x - 5\right)

Only the positive root is kept because f is defined for x\geq5 :

f^{-1}\left(x\right) = \sqrt{\dfrac{3}{2}\left(x - 5\right)}

This function is invertible and the inverse function has the domain x \geq 5.

The derivative of f\left(x\right) is:

\dfrac{d}{dx}f\left(x\right) = \dfrac{d}{dx}\left(\dfrac{2}{3}x^2 + 5\right)

f'\left(x\right) = \dfrac{2}{3} \cdot 2x = \dfrac{4}{3}x

Now the formula for the derivative of the inverse of f\left(x\right) can be used:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{\dfrac{4}{3}\sqrt{\dfrac{3}{2}\left(x - 5\right)}}

The function \left[f^{-1}\right]'\left(x\right) is undefined at x = 5. f^{-1}\left(x\right) exists only if the domain x \geq 5 and the function f^{-1}\left(x\right) is differentiable when x \gt 5.

f^{-1} is differentiable for any x \gt 5 and \left[f^{-1}\right]'\left(x\right) = \dfrac{3}{4\sqrt{\dfrac{3}{2}\left(x - 5\right)}}

f : x \longmapsto 3\sqrt{x}

The derivative of the inverse of a function f\left(x\right) is:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

The inverse of a function can be found by swapping x and f\left(x\right) and solving for f\left(x\right) :

f\left(x\right) = 3\sqrt{x}

x = 3\sqrt{f^{-1}\left(x\right)}

x^2 = 9 \cdot f^{-1}\left(x\right)

f^{-1}\left(x\right) = \dfrac{x^2}{9}

This function is invertible. Since the range of f\left(x\right) is f\left(x\right) \geq 0, the domain of f^{-1}\left(x\right) is x \geq 0. Since the domain of f^{-1}\left(x\right) is x \geq 0, it is dicontinuous at x = 0 and therefore differentiable when x \gt 0.

The derivative of f\left(x\right) is:

\dfrac{d}{dx}f\left(x\right) = \dfrac{d}{dx}\left(3\sqrt{x}\right)

f'\left(x\right) = 3 \cdot \dfrac{d}{dx}x^{\frac{1}{2}}

f'\left(x\right) = 3 \cdot \dfrac{1}{2} x^{\frac{1}{2} - 1}

f'\left(x\right) = 3 \cdot \dfrac{1}{2} x^{\frac{-1}{2}}

f'\left(x\right) = \dfrac{3}{2\sqrt{x}}

The domain for f'\left(x\right) is x \gt 0.

Now the formula for the derivative of the inverse of f\left(x\right) can be used:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{\dfrac{3}{2\sqrt{\dfrac{x^2}{9}}}}

\left[f^{-1}\right]'\left(x\right) = \dfrac{2}{3}\sqrt{\dfrac{x^2}{9}}

\left[f^{-1}\right]'\left(x\right) = \dfrac{2}{3} \cdot \dfrac{x}{3}

\left[f^{-1}\right]'\left(x\right) = \dfrac{2x}{9}

While \left[f^{-1}\right]' exists on x \geq 0, it is not differentiable when x = 0 because the domain for f'\left(x\right) is x \gt 0.

f^{-1} is differentiable for any x \gt 0 and \left[f^{-1}\right]'\left(x\right) = \dfrac{2x}{9}

f : x \longmapsto -2x^3 + 8

The derivative of the inverse of a function f\left(x\right) is:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

The inverse of a function can be found by swapping x and f\left(x\right) and solving for f\left(x\right) :

f\left(x\right) = -2x^3 + 8

x = -2 \cdot \left(f^{-1}\left(x\right)\right)^3 + 8

-2 \cdot \left(f^{-1}\left(x\right)\right)^3 = x - 8

\left(f^{-1}\left(x\right)\right)^3 = \dfrac{8 - x}{2}

f^{-1}\left(x\right) = \left(\dfrac{-x + 8}{2}\right)^\dfrac{1}{3}

This function is invertible and f^{-1}\left(x\right) exists on the domain \dfrac{8 - x}{2} \geq 0, or x \leq 8. The inverse function f^{-1}\left(x\right) is therefore discontinuous at x = 8 and differentiable only on x \lt 8.

The derivative of f\left(x\right) is:

\dfrac{d}{dx}f\left(x\right) = \dfrac{d}{dx}\left(-2x^3 + 8\right)

f'\left(x\right) = -6x^2

Now the formula for the derivative of the inverse of f\left(x\right) can be used:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{-6\left({\left(\frac{-x + 8}{2}\right)^\frac{1}{3}}\right)^2}

\left[f^{-1}\right]'\left(x\right) = \dfrac{-1}{6\left(\dfrac{8-x}{2}\right)^\dfrac{2}{3}}

f^{-1} is differentiable for any x \lt 8 and \left[f^{-1}\right]'\left(x\right) = \dfrac{-1}{6\left(\dfrac{8-x}{2}\right)^\dfrac{2}{3}}.

f : x \longmapsto \dfrac{6}{x^2} + 3 on x \gt 3

The derivative of the inverse of a function f\left(x\right) is:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

The inverse of a function can be found by swapping x and f\left(x\right) and solving for f\left(x\right) :

f\left(x\right) = \dfrac{6}{x^2} + 3

x = \dfrac{6}{\left[f^{-1}\left(x\right)\right]^2} + 3

x - 3 = \dfrac{6}{\left[f^{-1}\left(x\right)\right]^2}

\left[f^{-1}\left(x\right)\right]^2\left(x - 3\right) = 6

\left[f^{-1}\left(x\right)\right]^2 = \dfrac{6}{x-3}

Only the positive root is kept because f is defined for x \gt 3 :

f^{-1}\left(x\right) = \left(\dfrac{6}{x-3}\right)^{\frac{1}{2}}

This function is invertible on the domain x \gt 3.

The derivative of f\left(x\right) is:

\dfrac{d}{dx}f\left(x\right) = \dfrac{d}{dx}\left(\dfrac{6}{x^2} + 3\right)

f'\left(x\right) = 6 \cdot \dfrac{d}{dx}\left(x^{-2}\right) + \dfrac{d}{dx}\left(3\right)

f'\left(x\right) = 6 \cdot -2x^{-3}

f'\left(x\right) = \dfrac{-12}{x^3}

Now the formula for the derivative of the inverse of f\left(x\right) can be used:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{\dfrac{-12}{\left({\left(\frac{6}{x-3}\right)^{\frac{1}{2}}}\right)^{3}}}

\left[f^{-1}\right]'\left(x\right) = \dfrac{-\left(\dfrac{6}{x-3}\right)^\dfrac{3}{2}}{12}

f^{-1} is differentiable for any x \gt 3 and \left[f^{-1}\right]'\left(x\right) = \dfrac{-\left(\dfrac{6}{x-3}\right)^\dfrac{3}{2}}{12}

f : x \longmapsto 2 \cdot e^x

The derivative of the inverse of a function f\left(x\right) is:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

The inverse of a function can be found by swapping x and f\left(x\right) and solving for f\left(x\right) :

f\left(x\right) = 2 \cdot e^x

x = 2 \cdot e^{f^{-1}\left(x\right)}

\ln\left(x\right) = \ln\left(2e{f^{-1}\left(x\right)}\right)

\ln\left(x\right) = \ln\left(2\right) + \ln\left(e{f^{-1}\left(x\right)}\right)

\ln\left(x\right) - \ln\left(2\right) = f^{-1}\left(x\right)

This function is invertible with the domain x \gt 0

The derivative of f\left(x\right) is:

\dfrac{d}{dx}f\left(x\right) = \dfrac{d}{dx}\left(2 \cdot e^x \right)

f'\left(x\right) = 2 \cdot e^x

Now the formula for the derivative of the inverse of f\left(x\right) can be used:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{2e^{\ln\left(x\right) - \ln\left(2\right)}}

\left[f^{-1}\right]'\left(x\right) = \dfrac{e^{\ln\left(2\right)}}{2e^{\ln\left(x\right)}}

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{x}

f^{-1} is differentiable for any x \gt 0 and \left[f^{-1}\right]'\left(x\right) = \dfrac{1}{x}

f : x \longmapsto 4 \cdot x^2 on -\infty \lt x \lt \infty

The derivative of the inverse of a function f\left(x\right) is:

\left[f^{-1}\right]'\left(x\right) = \dfrac{1}{f'\left(f^{-1}\left(x\right)\right)}

The inverse of a function can be found by swapping x and f\left(x\right) and solving for f\left(x\right) :

f\left(x\right) = 4 \cdot x^2

x = 4 \cdot \left[{f^{-1}\left(x\right)}\right]^2

\left[{f^{-1}\left(x\right)}\right]^2 = \dfrac{x}{4}

f^{-1}\left(x\right) = \dfrac{\sqrt{x}}{2}, or f^{-1}\left(x\right) = -\dfrac{\sqrt{x}}{2}

f^{-1}\left(x\right) has more than one unique value for a single given value of x and is therefore not a function. f\left(x\right) is therefore not invertible.

f^{-1} does not exist.

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Introduction to derivatives
  • Exercise : Find the derivative of a function at a certain point using the difference quotient formula
  • Exercise : Find the derivative of a power function
  • Exercise : Find the derivative of an exponential function
  • Exercise : Find the derivative of a logarithmic function
  • Exercise : Find the derivative of a trigonometric function
  • Exercise : Find the derivative of a function of the form x -> a.f(x)+g(x)
  • Exercise : Find the derivative of a function of the form x -> f(x).g(x)
  • Exercise : Find the derivative of a function of the form x -> f(x)/g(x)
  • support@kartable.com
  • Legal notice

© Kartable 2026