01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Find a zero-denominator limit using factorization

Find a zero-denominator limit using factorization Calculus

Find the following limits using factorization.

\lim\limits_{x \to 3}{\dfrac{4x-12}{2x^2-10x+12}}

Factor the numerator and the denominator.

The numerator is:

4x - 12 = 4\left(x - 3\right)

The number 2 in the denominator can be pulled out front:

2x^2 - 10x + 12 = 2\left(x^2 - 10 + 12\right)

The second-order polynomial \left(x^2 - 10 + 12\right) can be factored further:

\left(x^2 - 10 + 12\right) = \left(x - 3\right)\left(x - 2\right)

The overall function can be re-written as:

\dfrac{4x - 12}{2x^2 - 10x + 12} = \dfrac{4\left(x-3\right)}{2\left(x - 3\right)\left(x - 2\right)} = \dfrac{4}{2}\dfrac{\left(x-3\right)}{\left(x-3\right)}\dfrac{1}{x-2} = \left(2\right)\left(1\right)\left(\dfrac{1}{x-2}\right)

The limit is found by evaluating at x = 3 :

\lim\limits_{x \to 3} \dfrac{2}{x-2} = \dfrac{2}{3-2} = \dfrac{2}{1} = 2

\lim\limits_{x \to 3}{\dfrac{4x-12}{2x^2-10x+12}}=2

\lim\limits_{x \rightarrow 3} \dfrac{2x^2 - 4x - 6}{3x^2 - 3x - 18}

Factor the numerator and the denominator.

The number 2 in the numerator can be pulled out front:

2x^2 - 4x - 6 = 2\left(x^2 - 2x - 3\right)

The second-order polynomial \left(x^2 - 2x - 3\right) can be factored further:

\left(x^2 - 2x - 3\right) = \left(x - 3\right)\left(x + 1\right)

The 3 in the denominator can be pulled out front:

3x^2 - 3x - 18 = 3\left(x^2 - x - 6\right)

The second-order polynomial \left(x^2 - x - 6\right) can be factored further:

\left(x^2 - x - 6\right) = \left(x - 3\right)\left(x + 2\right)

The overall function can be re-written as:

\dfrac{2x^2 - 4x - 6}{3x^2 - 3x - 18} = \dfrac{2\left(x - 3\right)\left(x + 1\right)}{3\left(x - 3\right)\left(x + 2\right)} = \dfrac{2}{3}\dfrac{\left(x-3\right)}{\left(x-3\right)}\dfrac{\left(x+1\right)}{\left(x+2\right)} = \dfrac{2}{3}\dfrac{\left(x+1\right)}{\left(x+2\right)}

The limit is found by evaluating at x = 3 :

\lim\limits_{x \rightarrow 3} \dfrac{2}{3}\dfrac{\left(x+1\right)}{\left(x+2\right)} = \dfrac{2}{3}\dfrac{\left(3+1\right)}{\left(3+2\right)} = \dfrac{2}{3}\left( \dfrac{4}{5} \right) = \dfrac{8}{15}

\lim\limits_{x \rightarrow 3} \dfrac{2x^2 - 4x - 6}{3x^2 - 3x - 18} = \dfrac{8}{15}

\lim\limits_{x \rightarrow \frac{-4}{5}} \dfrac{5x+4}{x^2 + x + \dfrac{4}{25}}

Factor the denominator and numerator.

The second-order polynomial \left(x^2 + x + \dfrac{4}{25}\right) in the denominator can be factored further:

\left(x^2 + x + \dfrac{4}{25}\right) = \left(x + \dfrac{4}{5}\right)\left(x + \dfrac{1}{5}\right)

The number 5 can be pulled out in front of the numerator:

5x + 4 = 5\left(x + \dfrac{4}{5}\right)

The overall function can be re-written as:

\dfrac{5x+4}{x^2 + x + \dfrac{4}{25}} = \dfrac{5\left(x + \dfrac{4}{5}\right)}{\left(x + \dfrac{4}{5}\right)\left(x + \dfrac{1}{5}\right)} = \dfrac{\left(x + \dfrac{4}{5}\right)}{\left(x + \dfrac{4}{5}\right)}\times\dfrac{5}{x + \dfrac{1}{5}} = \dfrac{5}{x + \dfrac{1}{5}}

The limit is found by evaluating at x = \dfrac{-4}{5}:

\lim\limits_{x \rightarrow \frac{-4}{5}} \dfrac{5}{x + \dfrac{1}{5}} = \dfrac{5}{\dfrac{-4}{5} + \dfrac{1}{5}} = \dfrac{5}{\dfrac{-3}{5}} = \dfrac{-25}{3}

\lim\limits_{x \rightarrow \frac{-4}{5}} \dfrac{5x+4}{x^2 + x + \dfrac{4}{25}} = \dfrac{-25}{3}

\lim\limits_{x \rightarrow \frac{2}{5}} \dfrac{5x - 2}{5x^2 - 27x + 10}

Factor the numerator and the denominator.

The second-order polynomial \left(5x^2 - 27x + 10\right) can be factored further:

\left(5x^2 - 27x + 10\right) = \left(x - 5\right)\left(5x - 2\right)

The number 5 can be pulled out front of the numerator:

5x - 2 = 5\left(x - \dfrac{2}{5} \right)

The overall function can be re-written as:

\dfrac{5x - 2}{5x^2 - 27x + 10} = \dfrac{5\left( x - \dfrac{2}{5} \right)}{\left(x - 5\right)\left(5x - 2\right)} = \dfrac{\left(5x - 2\right)}{\left(5x - 2\right)} \times \dfrac{1}{x - 5} = \dfrac{1}{x - 5}

The limit is found by evaluating at x = \dfrac{2}{5} :

\lim\limits_{x \rightarrow \frac{2}{5}} \dfrac{1}{x - 5} = \dfrac{1}{\dfrac{2}{5} - 5} = \dfrac{1}{\dfrac{-23}{5}} = \dfrac{-5}{23}

\lim\limits_{x \rightarrow \frac{2}{5}} \dfrac{4x - 12}{2x^2 - 10x + 12} = \dfrac{-5}{23}

\lim\limits_{x \rightarrow \frac{1}{2}} \dfrac{2x^2 + 3x - 2}{2x - 1}

Factor the numerator and the denominator.

The second-order polynomial \left(2x^2 + 3x - 2\right) in the numerator can be factored further:

\left(2x^2 + 3x - 2\right) = \left(2x - 1\right)\left(x + 2\right)

The overall function can be re-written as:

\dfrac{2x^2 + 3x - 2}{2x - 1} = \dfrac{\left(2x - 1\right)\left(x + 2\right)}{2x - 1} = \left(x + 2\right)\times\dfrac{\left(2x - 1\right)}{\left(2x - 1\right)} = x + 2

The limit is found by evaluating at x = 3 :

\lim\limits_{x \rightarrow \frac{1}{2}} x + 2 = \dfrac{1}{2} + 2 = \dfrac{5}{2}

\lim\limits_{x \rightarrow \frac{1}{2}} \dfrac{2x^2 + 3x - 2}{2x - 1} = \dfrac{5}{2}

\lim\limits_{x \rightarrow 4} \dfrac{2x^2 - 32}{x^2 - x - 12}

Factor the numerator and the denominator.

The number 2 in the numerator can be pulled out front:

2x^2 - 32 = 2\left(x^2 - 16\right)

The second-order polynomial \left(x^2 - 16\right) can be factored further:

\left(x^2 - 16\right) = \left(x - 4\right)\left(x + 4\right)

The second-order polynomial \left(x^2 - x - 12\right) can be factored further:

\left(x^2 - x - 12\right) = \left(x - 4\right)\left(x + 3\right)

The overall function can be re-written as:

\dfrac{2x^2 - 32}{x^2 - x - 12} = \dfrac{2\left(x - 4\right)\left(x + 4\right)}{\left(x - 4\right)\left(x + 3\right)} = \dfrac{\left(x - 4\right)}{\left(x - 4\right)}\times\dfrac{2\left(x + 4\right)}{\left(x + 3\right)} = \dfrac{2\left(x + 4\right)}{\left(x + 3\right)}

The limit is found by evaluating at x = 4 :

\lim\limits_{x \rightarrow 4} \dfrac{2\left(x + 4\right)}{\left(x + 3\right)} = \dfrac{2\left(4 + 4\right)}{\left(4 + 3\right)} = \dfrac{16}{7}

\lim\limits_{x \rightarrow 4} \dfrac{2x^2 - 32}{x^2 - x - 12} = \dfrac{16}{7}

\lim\limits_{x \rightarrow 2} \dfrac{x^2 - 4}{3x^3 + 6x^2 - 12x - 24}

Factor the denominator.

The number 3 in the denominator can be pulled out front:

3x^3 + 6x^2 - 12x - 24 = 3\left(x^3 + 2x^2 - 4x - 8\right)

The third-order polynomial \left(x^3 + 2x^2 - 4x - 8\right) can be factored further:

\left(x^3 + 2x^2 - 4x - 8\right) = \left(x^2 - 4\right)\left(x + 2\right)

The overall function can be re-written as:

\dfrac{x^2 - 4}{3x^3 + 6x^2 - 12x - 24} = \dfrac{x^2 - 4}{3\left(x^2 - 4\right)\left(x + 2\right)} = \dfrac{\left(x^2 - 4\right)}{\left(x^2 - 4\right)} \times \dfrac{1}{3\left(x+2\right)} = \dfrac{1}{3\left(x + 2\right)}

The limit is found by evaluating at x = 2 :

\lim\limits_{x \rightarrow 2} \dfrac{1}{3\left(x + 2\right)} = \dfrac{1}{3\left(2 + 2\right)} = \dfrac{1}{12}

\lim\limits_{x \rightarrow 2} \dfrac{x^2 - 4}{3x^3 + 6x^2 - 12x - 24} = \dfrac{1}{12}

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Limits of functions
  • Exercise : Make conjecture about limits from graphs
  • Exercise : Identify vertifcal and horizontal asymptotes from graphs
  • Exercise : Find the limit of a polynomial
  • Exercise : Find the limit of an exponential function
  • Exercise : Find the limit of a function of the form f+g
  • Exercise : Find the limit of a function of the form f.g
  • Exercise : Find the limit of a function of the form f/g
  • support@kartable.com
  • Legal notice

© Kartable 2026