01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Find the limit of a polynomial

Find the limit of a polynomial Calculus

Find the following limits.

\lim\limits_{x \to \infty} \left(3x^3-2x^2+4\right)

The limit of a polynomial as x approaches infinity or negative infinity depends only on the highest-order term, because at numbers with arbitrarily large magnitudes, the highest-order term dominates.

Therefore, we have:

\lim\limits_{x \rightarrow \infty} \left(3x^3 - 2x^2 + 4\right) = \lim\limits_{x \rightarrow \infty} 3x^3 = 3\lim\limits_{x \rightarrow \infty} x^3 .

We know that:

\lim\limits_{x \rightarrow \infty} x^3 = \infty

Thus:

\lim\limits_{x \to \infty} f\left(x\right)=\infty

\lim\limits_{x \to \infty} \left(-x^2 + 2x -1\right)

The limit of a polynomial as x approaches infinity (or negative infinity) depends only on the highest-order term, because at numbers with arbitrarily large magnitudes, the highest-order term dominates.

Therefore we have:

\lim\limits_{x \rightarrow \infty} \left(-x^2 + 2x -1\right) = \lim\limits_{x \rightarrow \infty} -x^2 = -\lim\limits_{x \rightarrow \infty} x^2

We know that:

\lim\limits_{x \rightarrow \infty} x^2 = \infty

Therefore, remembering the negative sign of the coefficient:

\lim\limits_{x \to \infty} f\left(x\right)=-\infty

\lim\limits_{x \to 4} \left(2x^2 - 4x + 5\right)

To find the limit, plug 4 into the function:

\lim\limits_{x \rightarrow 4} f\left(x\right) = 2\left(4\right)^2 - 4\left(4\right) + 5 = 2\left(16\right) - 16 + 5 = 16 + 5 = 21

Therefore:

\lim\limits_{x \rightarrow 4} f\left(x\right) = 21

\lim\limits_{x \to \infty} f\left(x\right)=21

\lim\limits_{x \to \infty} \left(2x^2 - 4x + 5\right)

The limit of a polynomial as x approaches infinity (or negative infinity) depends only on the highest-order term, because at numbers with arbitrarily large magnitudes, the highest-order term dominates.

Therefore we have:

\lim\limits_{x \rightarrow \infty} \left(2x^2 - 4x + 5\right)= \lim\limits_{x \rightarrow \infty} 2x^2= 2\lim\limits_{x \rightarrow \infty} x^2

We know that:

\lim\limits_{x \rightarrow \infty} x^2 = \infty

Therefore:

\lim\limits_{x \to \infty} f\left(x\right)=\infty

\lim\limits_{x \to -\infty} \left(-5x^7 + x^4 + 3x^2 - x\right)

The limit of a polynomial as x approaches infinity (or negative infinity) depends only on the highest-order term, because at numbers with arbitrarily large magnitudes, the highest-order term dominates.

Therefore we have:

\lim\limits_{x \rightarrow -\infty} \left(-5x^7 + x^4 + 3x^2 - x\right) = \lim\limits_{x \rightarrow -\infty} -5x^7 = -5\lim\limits_{x \rightarrow -\infty} x^7

We know that:

\lim\limits_{x \rightarrow -\infty} x^7 = -\infty

Therefore, remembering the negative sign of the coefficient :

\lim\limits_{x \to -\infty} f\left(x\right)=\infty

\lim\limits_{x \to \infty} \left(-x^3 + 4x^2 - 2x + 3\right)

The limit of a polynomial as x approaches infinity or negative infinity depends only on the highest-order term, because at numbers with arbitrarily large magnitudes, the highest-order term dominates.

Therefore we have:

\lim\limits_{x \rightarrow \infty} \left(-x^3 + 4x^2 - 2x + 3\right) = \lim\limits_{x \rightarrow \infty} -x^3 =-\lim\limits_{x \rightarrow \infty} x^3 .

We know that:

\lim\limits_{x \rightarrow \infty} x^3 = \infty

Therefore, since there is a negative sign on the coefficient :

\lim\limits_{x \to \infty} f\left(x\right)=-\infty

\lim\limits_{x \to -\infty} \left(4x^4 + 2x^2 + 6\right)

The limit of a polynomial as x approaches infinity (or negative infinity) depends only on the highest-order term, because at numbers with arbitrarily large magnitudes, the highest-order term dominates.

Therefore we have:

\lim\limits_{x \rightarrow -\infty} \left(4x^4 + 2x^2 + 6\right) = \lim\limits_{x \rightarrow -\infty} 4x^4 = 4\lim\limits_{x \rightarrow -\infty} x^4

We know that:

\lim\limits_{x \rightarrow -\infty} x^4 = \infty

Therefore:

\lim\limits_{x \to -\infty} f\left(x\right)=\infty

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Limits of functions
  • Exercise : Make conjecture about limits from graphs
  • Exercise : Identify vertifcal and horizontal asymptotes from graphs
  • Exercise : Find the limit of an exponential function
  • Exercise : Find the limit of a function of the form f+g
  • Exercise : Find the limit of a function of the form f.g
  • Exercise : Find the limit of a function of the form f/g
  • Exercise : Find a zero-denominator limit using factorization
  • support@kartable.com
  • Legal notice

© Kartable 2026